Elementary Coding Theory
The message is a binary string \((m\text{-tuple})\)

The code word is also a binary string \((n\text{-tuple})\)
Errors

- Error - change in some of the bits in the code word
- Single error - change in only one bit of a code word
• Add a parity check bit

• Message word + check bit = code word

<table>
<thead>
<tr>
<th>Message Word (m-tuple)</th>
<th>Even Parity Check (n-tuple)</th>
<th>Odd Parity Check (n-tuple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 000</td>
<td>000 000 0</td>
<td>000 000 1</td>
</tr>
<tr>
<td>110 000</td>
<td>110 000 0</td>
<td>110 000 1</td>
</tr>
<tr>
<td>110 111</td>
<td>110 111 1</td>
<td>110 111 0</td>
</tr>
</tbody>
</table>
• Adding a parity check bit allows the detection of all single errors

• All single errors result in an error indication

<table>
<thead>
<tr>
<th>Received 7-tuple</th>
<th>Decoded Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 000 1</td>
<td>001 000</td>
</tr>
<tr>
<td>101 010 0</td>
<td>Parity error</td>
</tr>
<tr>
<td>111 111 0</td>
<td>111 111</td>
</tr>
<tr>
<td>111 111 1</td>
<td>Parity error</td>
</tr>
</tbody>
</table>
Parity

- Even (or odd) parity checking is sufficient for most computer purposes
- Limitations:
 - Cannot detect some multiple errors
 - Cannot correct any errors

110 010 1 Code word

111 000 1 Code word
Maximum Likelyhood Decoding

• Assume transmission errors:
 – are rare
 – occur independently in each bit

• Therefore, 2 errors occur less frequently than 1, 3 errors occur less frequently than 2, etc.

• Maximum likelyhood decoding
 – Look for code word that was most likely transmitted
The messages are either 0 or 1

<table>
<thead>
<tr>
<th>Message</th>
<th>Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>111</td>
</tr>
</tbody>
</table>

Difference Matrix shows the number of bits a given 3-tuple is different from a code word

<table>
<thead>
<tr>
<th>Code Word</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>111</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Simplest Error Correcting Code (cont.)

- Encoding

<table>
<thead>
<tr>
<th>Message</th>
<th>Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>111</td>
</tr>
</tbody>
</table>

- For single error correction, select closest code word from difference matrix
Enhanced Error Detection

Encoding

<table>
<thead>
<tr>
<th>Message</th>
<th>Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>111</td>
</tr>
</tbody>
</table>

Alternatively, can detect up to two errors

But error correction then becomes impossible

111 \sim 100 (transmission error)

Don’t know if 111 or 000 was transmitted
The ability of a code to detect or to correct errors depends solely on its set of code words

Suppose 1100 and 0100 are code words in some code

1100 ↛ Error in bit one ↛ 0100

Received code would be decoded as an erroneous message

Suppose 1100 and 0101 are code words in some code

1100 ↛ Error in any single bit ↛ Can never be 0101
Hamming Distance

Let a and b be binary n-tuples. The number of places in which a and b differ is called the *Hamming distance* between a and b. The Hamming distance between tuples of different length is undefined.

$$H(a, a) = 0$$

If $H(a, b) = 0$, then $a = b$
Metric Properties

\(a, b, c \in N_2^n \) (binary \(n \)-tuples)

- \(H(a, b) \geq 0 \)
- \(H(a, b) = 0 \iff a = b \)
- \(H(a, b) = H(b, a) \)
- \(H(a, c) \leq H(a, b) + H(b, c) \)
Consider a code whose code words are in N_2^n. The minimum distance, d, for the code is the minimum of Hamming distances $H(a,b)$ where a and b are distinct code words.

If $d = 1$, then the code cannot detect all transmission errors.

If $d = 2$, then the code can detect but not correct all single errors.

If $d \geq 3$, then the maximum likelyhood decoding scheme can correct all single errors.
Error Correcting Example

\[c_1 = 00000, \; c_2 = 01110, \; c_3 = 10111, \; c_4 = 11001 \]

\[d = ? \]

Received 5-tuple = 11111 = r

<table>
<thead>
<tr>
<th>(c_i)</th>
<th>(H(r, c_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>5</td>
</tr>
<tr>
<td>01110</td>
<td>2</td>
</tr>
<tr>
<td>10111</td>
<td>1</td>
</tr>
<tr>
<td>11001</td>
<td>2</td>
</tr>
</tbody>
</table>

\(c_3 \) is the unique code word with minimum distance.
A group is a mathematical structure consisting of a set and an operation,
\([A, \cdot]\) with the following properties:

- For all \(a, b \in A\), \(a \cdot b \in A\) (closure)
- For all \(a, b, c \in A\), \((a \cdot b) \cdot c = a \cdot (b \cdot c)\) (associativity)
- There exists \(e \in A\) such that for all \(x \in A\), \(e \cdot x = x = x \cdot e\) (identity)
- For all \(x \in A\) there exists \(y \in A\) such that \(x \cdot y = e = y \cdot x\) (invertibility)
Group Codes

Group codes facilitate the construction of error correcting codes.

A code whose code words are binary n-tuples is a group code if the sum in N^n_2 of any two code words is again a code word.

The addition is a component-wise mod 2 addition

<table>
<thead>
<tr>
<th>$+$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If c is a code word, then $c + c = \mathbf{0}$ (where $\mathbf{0}$ is the element of N^n_2 consisting of all zeros.)
The weight of a binary n-tuple a is the number of 1s in the n-tuple.

$W(1101) = 3$, $W(10001) = 2$, $W(111) = 3$, $W(00000) = 0$

$W(a) = H(a, 0)$

$H(a, b) = W(a + b)$

Let d be the minimum distance for a group code. Then d also equals the minimum of the weights of all code words except 0.
Multiplication Mod 2

<table>
<thead>
<tr>
<th>× 2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Let H be an $n \times r$ binary matrix.

Suppose that the code words for a code consist of all binary n-tuples c such that $c \cdot H = 0_r$. $c \in N^n_2$, and $0_r \in N^r_2$.
Parity Check Matrices

Example:

\[
H = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>3-tuple</th>
<th>(c \cdot H)</th>
<th>Code word?</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>00</td>
<td>yes</td>
</tr>
<tr>
<td>001</td>
<td>01</td>
<td>no</td>
</tr>
<tr>
<td>010</td>
<td>10</td>
<td>no</td>
</tr>
<tr>
<td>011</td>
<td>11</td>
<td>no</td>
</tr>
<tr>
<td>100</td>
<td>11</td>
<td>no</td>
</tr>
<tr>
<td>101</td>
<td>10</td>
<td>no</td>
</tr>
<tr>
<td>110</td>
<td>01</td>
<td>no</td>
</tr>
<tr>
<td>111</td>
<td>00</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(d = 3\)—single error correcting or double error detecting
Another example:

\[H = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>3-tuple</th>
<th>(c \cdot H)</th>
<th>Code word?</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>011</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(d = 1 \)—not even single error detecting!
Group Homomorphism

Let \([N_2^n, +_2]\) be a group.

Let \([N_2^n, +_2] \rightarrow [N_2^r, +_2]\) be a homomorphism. (This homomorphism \(f\) maps wider bitstrings to narrower bitstrings.)

\(\ker f\) is the set of elements in \([N_2^n, +_2]\) that map to to \(0_r\) under \(f\).

\(\ker f\) includes \(0_n\), all of its elements are invertible, it is closed, and associatively obviously still holds; therefore, \(\ker f\) is the set of code words in some group code.
If in H the last r rows form the $r \times r$ identity matrix, then H is a canonical parity check matrix.

\[
\begin{bmatrix}
 c_1 & c_2 & c_3 \\
 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 1 \\
 0 \\
 1
\end{bmatrix} = \begin{bmatrix}
 1 \cdot c_1 + 0 \cdot c_2 + 1 \cdot c_3 \\
 c_1 + c_3
\end{bmatrix} = [0]
\]

This means the number of 1s in the first and third places is even; thus, an even parity check is performed on bits 1 and 3.
Another Example

\[
\begin{bmatrix}
 c_1 & c_2 & c_3 \\
 1 & 1 & 0 \\
 0 & 1 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
 1 & 1 \\
 1 & 0 \\
 0 & 1
\end{bmatrix}
= \begin{bmatrix}
 (c_1 + c_2) & (c_1 + c_3)
\end{bmatrix}
= \begin{bmatrix}
 0 & 0
\end{bmatrix}
\]

This means an even parity check is being performed on bits 1 and 2, and an even parity check is being performed on bits 1 and 3.
Minimum Code Weight

The minimum weight of the code = the minimum number of rows in H that add to 0_r.
Hamming Codes

To generate a single error correcting code for $N^m_2 = N^{n-r}_2$ (a subgroup of N^n_2):

- The dimension of H is $n \times r$
- no two rows of H can be the same (add to 0_r)
- each row in H has r elements
- there can be no more than 2^r rows
- no row can contain 0_r, so number of rows $\leq 2^r - 1$
- $n \leq 2^r - 1$
- $m = n - r \leq 2^r - r - 1$

A Hamming code is *perfect* if $m = 2^r - r - 1$.
Hamming Code Example

\[m = 2 \]

\[n = 5 \]

\[r = 3 \]

\[H = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \]
Hamming Code Example (cont.)

\[
\begin{bmatrix}
 c_1 & c_2 & c_3 & c_4 & c_5 \\
 1 & 0 & 1 \\
 1 & 1 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 101 \\
 111 \\
 100 \\
 010 \\
 001
\end{bmatrix} =
\begin{bmatrix}
 (c_1 + c_2 + c_3) \\
 (c_2 + c_4) \\
 (c_1 + c_2 + c_5)
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
<th>c_4</th>
<th>c_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$C = \{00000, 01111, 10101, 11010\}$
Decoding

Let c be the received code word.

- If $c \cdot H = 0_r$, then strip off the r check bits and interpret the m message bits as the original message.

- If $c \cdot H \neq 0_r$, then at least one of the bits is non-zero. Find the row in H that matches the received bogus code word. The number of the matching row indicates the bit position of the error in the received code word.
Decoding Example

Received Code Word = 01111

Decoding:

\[
\begin{bmatrix}
0 & 1 & 1 & 1 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
(0+1+1+0+0) & (0+1+0+1+0) & (0+1+0+0+1)
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 0
\end{bmatrix}
\]

Interpretation: Message was 01
Decoding Example 2

Received Code Word = 01101

Decoding:

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
(0+1+1+0+0) & (0+1+0+0+0) & (0+1+0+0+1)
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0
\end{bmatrix}
\]

Interpretation: Non-zero result: 010 which matches row 4 in \(H \); therefore, error is in bit 4, the code word should have been 01111, and message was 01