MATH 280 Discrete Mathematical Structures Assignment #3

Name _____

The point values for each question is given within []. The total number of points for this assignment is 37.

Most of these problems have a single number for an answer. For full credit (or partial credit if your answer is incorrect), show how you obtained your result.

- [4] 1. Given the truth values A true, B false, C true, what is the truth value of each of the following statements?
 - (a) $A \land (B \lor C)$ (b) $(A \land B) \lor C$
 - (c) $\neg (A \lor B) \land C$
 - (d) $\neg A \lor (\neg B \land C)$
- [8] 2. Construct truth tables for the following statements. Show intermediate results in extra columns. Note any tautologies or contradictions.
 - (a) $A \wedge (\neg A \lor \neg B)$
 - (b) $(A \to B) \to [(A \lor C) \to (B \lor C)]$
 - (c) $A \to (B \to A)$
 - (d) $A \wedge B \leftrightarrow \neg B \lor \neg A$
- [4] 3. In a certain country every inhabitant is either a truth teller (who always tells the truth) or a liar (who always lies). Traveling in this country you meet two of the inhabitants, Pat and Mel. Pat says, "If I am a truth teller, then Mel is a truth teller."
 - (a) Is Pat a truth teller or a liar?

(b) Is Mel a truth teller or a liar?

Provide mathematical justification for your answers.

[3] 4. Justify each step in the proof sequence of $P \land (Q \to R) \Rightarrow [Q \to (P \land R)]$

- $\begin{array}{ll} 1. & P \\ 2. & Q \rightarrow R \\ 3. & Q \end{array}$
- 4. *R*
- 5. $P \wedge R$

[3] 5. Justify each step in the proof sequence of $\neg A \land B \land [B \to (A \lor C)] \Rightarrow C$

- 1. $\neg A$ 2. B3. $B \rightarrow (A \lor C)$ 4. $A \lor C$ 5. $\neg (\neg A) \lor C$ 6. $\neg A \rightarrow C$
- 7. *C*

[5] 6. Use propositional logic (not a truth table) to prove the validity of $\neg A \land (A \lor B) \Rightarrow B$

[5] 7. Use propositional logic (not a truth table) to prove the validity of

[5] 8. Use propositional logic (not a truth table) to prove the validity of

 $(P \to Q) \land [P \to (Q \to R)] \Rightarrow (P \to R)$ $(P \to Q) \Rightarrow (\neg Q \to \neg P)$