\qquad
The point values for each question is given within []. The total number of points for this assignment is 43 .
[15] 1. For each of the following relations on the set $\{1,2,3,4\}$, write \mathbf{R} if the relation is reflexive, \mathbf{S} if the relation is symmetric, \mathbf{A} if the relation is antisymmetric, and \mathbf{T} if the relation is transitive.
(a) $\{(1,2),(2,3),(3,4)\}$
(b) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
(c) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
(d) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
(e) $\{(1,1),(2,2),(3,3),(4,4)\}$
[12] 2. For each of the following relations on the set of integers, \mathbb{Z}, write \mathbf{R} if the relation is reflexive, \mathbf{S} if the relation is symmetric, \mathbf{A} if the relation is antisymmetric, and \mathbf{T} if the relation is transitive.
(a) $x R \quad y \leftrightarrow x y \geq 1$
(b) $x R \quad y \leftrightarrow \exists k \in \mathbb{Z}$ such that $x=k y$
(c) x R $y \leftrightarrow x=y+1$ or $x=y-1$
(d) $x R y \leftrightarrow x \geq y^{2}$
[6] 3. Draw a Hasse diagram for each of the following partially ordered sets.
(a) $S=\{2,4,5,10,12,20,25\}, \quad x R y \leftrightarrow x$ divides y (said another way, x is a factor of y)
(b) $T=\wp(\{1,2,3\}), \quad A \quad B \leftrightarrow A \subseteq B$
[4] 4. Find the maximal and minimal elements of
(a) the poset described in Question 3a
(b) the poset described in Question 3b
[6] 5. In the $C++$ programming language, character strings can be represented by objects of type std::string. If s is a std: : string object, s. length () is the number of characters that make up s. All strings in C++ have a finite length. For all integers $0 \leq i<s$. length (), the expression s[i] evaluates to the character at position i in string s. As in all C -derived languages, the first character in string s is $\mathrm{s}[0]$.
(a) Let R be the relation on the set of all C++ strings such that $s R t \leftrightarrow s$.length () $=t$.length(). Prove that R is an equivalence relation on the set of all $\mathrm{C}++$ strings.
(b) Let R be the relation on the set of all non-empty $\mathrm{C}++$ strings such that $s R t \leftrightarrow s[0]=t[0]$. Prove that R is an equivalence relation on the set of all non-empty $\mathrm{C}++$ strings.

