\qquad
The point values for each question is given within []. The total number of points for this assignment is 40 .
[2] 1. Compute the transitive closure of the relation $\{(0,1),(1,2),(2,3)\}$
[5] 2. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Determine which of the following are functions.

- $f \subseteq A \times B$, where $f=\{(1, a),(2, b),(3, c),(4, d)\}$.
- $g \subseteq A \times B$, where $g=\{(1, a),(2, a),(3, b),(4, d)\}$.
- $h \subseteq A \times B$, where $h=\{(1, a),(2, b),(3, c)\}$.
- $k \subseteq A \times B$, where $k=\{(1, a),(2, b),(2, c),(3, a),(4, a)\}$.
- $p \subseteq A \times A$, where $p=\{(1, a),(1,1),(2,1),(3,1),(4,1)\}$.

3. For each of the following mappings from the given domain to the given codomain, write \mathbf{N} if the mapping is not a function, write \mathbf{F} if the mapping is a function that is neither injective nor surjective, write \mathbf{S} if the mapping is a surjective function, write \mathbf{I} if the mapping is an injective function, write \mathbf{B} if the mapping is a bijective function, and, if the mapping is a bijection, provide f^{-1}.
(a) $f: \mathbb{Z} \rightarrow \mathbb{N}, \quad f(x)=x^{2}+1$
(b) $f: \mathbb{Z} \rightarrow \mathbb{Q}, \quad f(x)=\frac{1}{x}$
(c) $f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Q}, \quad f(x, y)=\frac{x}{y+1}$
(d) $f: \mathbb{N} \rightarrow \mathbb{N}, \quad f(x)=2^{x}$
(e) $f: \mathbb{N} \rightarrow \mathbb{N}, \quad f(x)=\left\{\begin{array}{cc}x+1 & \text { if } x \text { is even } \\ x-1 & \text { if } x \text { is odd }\end{array}\right.$
4. If A and B are both finite, how many different functions are there from A to B ?
[4] 5. Prove that the set $\mathbb{N} \times \mathbb{N}$ is countable.
5. Consider the following recurrence relation:

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=2 T(n-1)+1
\end{aligned}
$$

[2] (a) Write the first five elements of the sequence.
[4] (d) Realizing that testing has its limitations, prove that your closed-form solution is correct.

