
MATH 280 Discrete Mathematical Structures Assignment #9

Name ____

The point values for each question is given within []. The total number of points for this assignment is 25.

1. Consider graph *G*:

- [2] (a) Provide an adjacency matrix for the graph.
- [2] (b) Compute the number of paths of length 3 between vertex 3 and vertex 4, and then list each path.
- [2] (c) Does *G* contain an Euler path? Why or why not?
- [2] (d) Is *G* Hamiltonian? Why or why not?
- [10] (e) We can use Dijkstra's Algorithm to compute the shortest path from vertex 0 to all the other vertices in graph G. Complete each of the tables below that represent the state of the data structures used by Dijkstra's algorithm each time a vertex's shortest distance from vertex 0 becomes known.

Step 1	Vertex	Known	Distance	Previous	Step 4	Vertex	Known	Distance	Previous
	0	True	0	-1		0	True	0	-1
	1	False	3	0		1			
	2	False	4	0		2			
	3	False	∞	-1		3			
	4	False	∞	-1		4			
	5	False	∞	-1		5			
Step 2	Vertex	Known	Distance	Previous	Step 5	Vertex	Known	Distance	Previous
	0	True	0	-1		0	True	0	-1
	1					1			
	2					2			
	3					3			
	4					4			
	5					5			
Step 3	Vertex	Known	Distance	Previous	Step 6	Vertex	Known	Distance	Previous
	0	True	0	-1		0	True	0	-1
	1					1			
	2					2			
	3					3			
	4					4			
	5					5			

- [2] 2. What is the maximum number of edges in a simple undirected graph with eight vertices? Justify your answer.
- [4] 3. Which of the graphs in Figure 9.2.11 of your textbook are isomorphic? Produce the bijection for one pair of isomorphic graphs.
- [1] 4. How many edges does K_{10} have? Justify your answer.