
MATH 280 Discrete Mathematical Structures Assignment #10

The point values for each question is given within []. The total number of points for this assignment is 30.

[6] 1. Provide the pre-, in-, and postorder traversals for the following tree:

2. Consider the following table of letter frequencies for a particular data set:

Letter	Frequency	Code
A	15	
E	25	
I	10	
0	30	
U	15	
Y	5	

(a) Construct a Huffman tree to be used to derive a minimal prefix code for the letters.

[3] (b) Complete the last column in the table with the bitstrings for the prefix code derived from your Huffman tree.

- 3. For each of the following mathematical structures circle G if the mathematical structure is a group, M if it is just a monoid, or N if it is neither a group nor a monoid.
 - (a) G M N (ℝ,+)
 (b) G M N (ℤ,·)
 (c) G M N (ℕ,-)

[3]

- 4. Determine which of the following mathematical structures are groups. For a group, you need to show closure, associativity, identity, and invertibility; otherwise, you need only show that one of these properties does not hold.
- [3] (a) $(\{-1,1\},\cdot)$, where \cdot is normal multiplication.

[3] (b) (\mathbb{Z},\diamond) , where $a \diamond b$ is the larger of a and b.

[3] 5. Show that the set of even integers form a subgroup of $(\mathbb{Z}, +)$.

- 6. Consider the monoid $M_1 = (\mathbb{Z}, +)$, where + is normal integer addition, and the monoid $M_2 = (A, +)$, where A is the set of 2×2 integer matrices and + is normal matrix addition. Next consider the function $f : M_1 \to M_2$, such that $f(x) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$.
- [3] (a) Show that f is a homomorphism from M_1 to M_2 .

[1] (b) Is *f* an isomorphism?