\qquad
The point values for each question is given within []. The total number of points for this assignment is 30 .
[6] 1. Provide the pre-, in-, and postorder traversals for the following tree:

2. Consider the following table of letter frequencies for a particular data set:

Letter	Frequency	Code
A	15	
E	25	
I	10	
0	30	
U	15	
Y	5	

(a) Construct a Huffman tree to be used to derive a minimal prefix code for the letters.
(b) Complete the last column in the table with the bitstrings for the prefix code derived from your Huffman tree.
3. For each of the following mathematical structures circle G if the mathematical structure is a group, M if it is just a monoid, or N if it is neither a group nor a monoid.
(a) $\operatorname{GMN}(\mathbb{R},+)$
(b) G M N (\mathbb{Z}, \cdot)
(c) $\operatorname{GMN}(\mathbb{N},-)$
4. Determine which of the following mathematical structures are groups. For a group, you need to show closure, associativity, identity, and invertibility; otherwise, you need only show that one of these properties does not hold.
(a) $(\{-1,1\}, \cdot)$, where \cdot is normal multiplication.
(b) (\mathbb{Z}, \diamond), where $a \diamond b$ is the larger of a and b.
5. Show that the set of even integers form a subgroup of $(\mathbb{Z},+)$.
6. Consider the monoid $M_{1}=(\mathbb{Z},+)$, where + is normal integer addition, and the monoid $M_{2}=(A,+)$, where A is the set of 2×2 integer matrices and + is normal matrix addition. Next consider the function $f: M_{1} \rightarrow M_{2}$, such that $f(x)=\left(\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right)$.
(a) Show that f is a homomorphism from M_{1} to M_{2}.
(b) Is f an isomorphism?

