\qquad
The point values for each question is given within []. The total number of points for this assignment is 40 .
[2] 1. Consider the monoid $(\mathbb{Z},+)$. Compute $\langle\{5\}\rangle$, the submonoid generated by the set $\{5\}$.
[4] 2. Consider the grammar $\langle T, N, S, P\rangle$, where $T=\{+, *,(), n\},, N=\{S\}, S=S$, and P is defined by

$$
S \quad \rightarrow \quad S+S|S * S|(S) \mid n
$$

Provide parse trees for the following strings:
(a) $n *(n+n)$
(b) $n * n+n$
[4] 3. Consider the grammar $\langle T, N, S, P\rangle$, where $T=\{+, *,(), n\},, N=\{E, T, F\}, S=E$, and P is defined by

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid n
\end{aligned}
$$

Provide parse trees for the following strings:
(a) $n *(n+n)$
(b) $n * n+n$
[6] 6. Give a regular expression for set of bitstrings
(a) containing an even number of 0 s
(b) that begin with a 0 and end with 010
7. Provide a finite automaton that recognizes the set of bitstrings that begin with a 0 and end with 010 .
4. Consider the set of all bitstrings that begin and end with a 1 .
(a) Provide a grammar for the language.
(b) Use your grammar to produce a parse tree for the string 10101
5. Give a regular expression for the set recognized by the following finite automaton:

8. Find a context-free grammar that generates the language $L=\left\{s s^{R} \mid s \in\{0,1\}^{*}\right.$ and s^{R} is the reverse of string $\left.s\right\}$.
9. Consider the regular expresson $\left(1^{*} 0(01)^{*}\right) \mid\left(00^{*}\right)$.
(a) Provide a context-free grammar $G=\langle T, N, S, P\rangle$ for strings represented by the regular expression.
(b) Given your G, draw a parse tree for 00000000 .
(c) Given your G, draw a parse tree for 00101 .
(d) Given your G, draw a parse tree for 1110 .

