
Curves and Surfaces

Chapter 9

1

Surface and Curve Representation

• Modeling existing objects

Mathematical descriptions may be unavailable

• Creating models from scratch

Perhaps from empirical data from scientific experiments

2

Polygon Mesh

• A set of connected planar
surfaces

• Solids are bounded by
polygon meshes

• Curved surfaces are only
approximated by polygon
meshes

3

Parametric Equations

4

Parametric Polynomial Curves

• Three polynomials with parameter t

• Coefficients of the polynomial determine the path of the curve

• Cubic polynomials are ideal

• Generally referred to as cubic curves

5

Polynomial Surface Patches

• Define the coordinates of points on a curved 3D surface

• Bivariate polynomials are used

• Generally referred to as bicubic patches

6

Quadric Surfaces

Useful for representing regular shapes

• Spheres

• Ellipsoids

• Cylinders

7

Polygon Meshes

• Collection of edges,
vertices, are polygons

• Each edge is shared by at
most two polygons

• An edge connects two
vertices

• Every edge is part of
some polygon

8

Representing Polygon Meshes

• Polygon meshes can be represented several ways

• There are advantages and disadvantages of each of representation

• Time vs. space trade-offs

• Application determines the best representation

9

Typical Polygon Operations

• Finding all edges incident to a vertex

• Finding the polygons sharing an edge

• Finding the polygons sharing a vertex

• Finding the vertices connected by an edge

• Displaying the mesh

• Checking the mesh’s consistency

10

Explicit Representation

• Each polygon is represented by a list of vertex coordinates

{(x0,y0,z0),(x1,y1,z1), ...,(xn,yn,zn)}

• Vertices are stored in traversal order

• Edges exit between successive vertices in the list

• Good for simple polygons

– Space efficient

• Bad for polygon meshes

– Shared vertices are duplicated
– Shared edges and vertices are not explicitly represented

11

Explicit Representation (cont.)

What happens if we attempt to drag a vertex interactively?

• We must find all polygons that share this vertex

• Therefore we must compare the vertices of one polygon with those of
all the other polygons

• n log n at best, and other problems make this impractical

12

Mesh Vertex List

• Each vertex is stored only once in a list

• A polygon is defined by a list of indices (pointers) into the vertex list

• Advantages

– Vertices not duplicated
– Vertex coordinates can be easily changed

• Disadvantages

– Hard to find polygons that share an edge
– Shared edges are drawn twice

13

Mesh Edge List

• Has a vertex list (like vertex list representation)

• Also has an edge list

• Edge list stores pairs of vertices the define that edge

• Edge list also stores up to two polygons that use that edge

• Redundant clipping, transformation, and scan conversion are avoided

• Filled polygons are easily displayed

14

Parametric Cubic Curves

• Express curve as a function of x, y, and z:

x = x

y = f (x)

z = g(x)

• Problem

– Infinite slope at some points of the curve
(infinity is tough to represent)

– Plotting the curve smoothly requires that the slope be computed

15

Parametric Equations

As a function of t the slopes are replaced with tangent vectors that need
never be infinite

x(t) = axt
3+bxt

2+ cxt +dx

y(t) = ayt
3+byt

2+ cyt +dy

z(t) = azt
3+bzt

2+ czt +dz

0 ≤ t ≤ 1

16

Tangent Vectors
Shown for x(t), but works similarly for y(t), z(t)

Find derivative with respect to t

dx
dt

= 3axt
2+2bxt + cx

Three derivatives form the tangent vector

Slopes of the curves are ratios of the tangent vectors

dy
dx

=
dy/dt
dx/dt

dx
dz

=
dx/dt
dz/dt

etc . . .

17

Why Cubic Curves?

• No lower order representation of curve segments can provide continuity
of position and slope where curve segments meet and at the same time
ensure the ends of the curve segment pass through the specified points

• Lowest order representation that can describe a non-planar curve
(required for 3D curves)

• Higher order parametric curves produce undesirable wriggles

18

Hermite Form of a Cubic

R P 4

are tangent vectors

are points

P

R

PP

R R

1 1

4

1 4

41

19

Hermite Math (1)

x(0) = P1x

x(1) = P4x

x′(0) = R1x

x′(1) = R4x

Subscript refers to x coordinate of point or tangent vector

Need to find ax, bx, cx, and dx

20

Hermite Math (2)

x(t) = [t3 t2 t 1] ·

a
b
c
d

x

= [t3 t2 t 1]Cx = TCx

Cx is the column vector of coefficients of x(t)

T is the row vector of powers of t

21

Hermite Math (3)

Conditions (1) expressed by (2):

x(0) = P1x = [0 0 0 1]Cx

x(1) = P4x = [1 1 1 1]Cx

22

Hermite Math (4)

To get the tangent vectors, differentiate (2)

x′(t) = [3t2 2t 1 0]Cx

x′(0) = R1x = [0 0 1 0]Cx

x′(1) = R4x = [3 2 1 0]Cx

23

Hermite Math (5)

Combine (3) and (4) to get

P1

P4

R1

R4 x

=

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

Cx

24

Hermite Math (6)

Invert the 4×4 matrix from (5) and multiply it to both sides of (5)

Cx =

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

P1

P4

R1

R4 x

= MhGhx

Mh is called the Hermite matrix

Gh is called the Hermite geometry matrix

25

Hermite Math (7)

x(t) = T MhGhx

y(t) = T MhGhy

z(t) = T MhGhz

Or, grouped together as

P(t) = T MhGh

Given P1, P4, R1, and R4, we can evaluate x(t), y(t),
and z(t) for 0 ≤ t ≤ 1 and find all the points on the cubic curve.

T Mh = [(2t3−3t2+1) (−2t3+3t2) (t3−2t2+ t) (t3− t2)]

26

Hermite Math (8)

T Mh = [(2t3−3t2+1) (−2t3+3t2) (t3−2t2+ t) (t3− t2)]

x(t) = T MhGhx

= P1x(2t3−3t2+1) + P4x(−2t3+3t2) + R1x(t
3−2t2+ t)

+ R4x(t
3− t2)

The four terms are called four “blending functions”

The first two blend P1 and P4

The second two blend R1 and R4

27

Bezier Form

• Similar to Hermite form but differs in definition of tangent vectors

• Four points are used

1

P2

P

4

3P

P

28

Difference from Hermite

Tangent vectors of the endpoints e determined by the lines P1P2 and P3P4.

R1 and R4 of the Hermite form are related to the Bezier points P1, P2, P3,
and P4 by:

R1 = 3(P2−P1) = P′(0)
R4 = 3(P4−P3) = P′(1)

29

Bezier Geometry Matrix

Gh =

P1

P4

R1

R4 x

=

1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3

P1

P2

P3

P4 x

= MhbGb

30

Bezier Matrix
Recall x(t) = T MhGhx

x(t) = T MhGhx = T MhMhbGbx

Let MhMhb = Mb.

x(t) = T MbGbx

Mb =

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

31

Why use Bezier Form?

Why use Bezier form instead of Hermite form?

• Four control points for
interactive use (moving
with a mouse, for
instance)

• Four control points bound
the curve (convex hull)

• Can be used to clip the
curve

1

P2

P

4

3P

P

32

B-spline Form

• “Smoother” than the other
forms

• Concept similer to
draftsman’s splines

1

P2

P

4

3P

P

33

B-spline Matrix

B-spline forms:

x(t) = T MsGsx

where

Ms =
1
6

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

34

B-spline Matrix

Approximate control points P1, P2, . . . , Pn by a series of B-splines.

Use a different geometry matrix between each pair of adjacent points.

Gi
s =

Pi−1

Pi

Pi+1

Pi+2

, 2 ≤ i ≤ n−2

35

Interpolation

• Presented as a lead in to B-splines

• Use an array of sample points to approximate a curve

• Could use polynomial, trigonometric, or exponential functions to build a
curve

• We’ll use polynomial functions

36

Interpolation (1)
n points (P1,P2, . . . ,Pn), which is shorthand for (x1,y1,z1), . . . ,(xn,yn,zn)

x(t) =
n

∑
i=1

xibi(t)

y(t) =
n

∑
i=1

yibi(t)

z(t) =
n

∑
i=1

zibi(t)

bi(t) are blending functions

37

Blending Functions

bi(t)

For each value of t they determine how much the ith sample point affects
the position of the curve.

Think of each sample point as trying to pull the curve in its direction.

bi(t) tells how hard the ith sample point is pulling.

If for some t, bi(t) = 1 and for each j 6= i,b j(t) = 0, then the ith sample
point has complete control over the curve. The curve therefore will pass
through point i.

38

Blending Functions (cont.)

For convenient formulation:

Let P1 be in complete control when t =−1

Let P2 be in complete control when t = 0

Let P3 be in complete control when t = 1

. . .

b1(t) = 1 at t =−1

b1(t) = 0 at t = 0,1, . . . ,n−2

39

Blending Functions (cont.)
Consider the function:

t(t −1)(t −2) . . .(t − [n−2])

At t =−1, it is

(−1)(−2)(−3) . . .(1−n) = c

Dividing by c will yield 1

b1(t) =
t(t −1)(t −2) . . .(t − [n−2])
(−1)(−2)(−3) . . .(1−n)

40

Blending Functions (cont.)

In general, for i:

bi(t) =
(t +1)(t)(t −1) . . .(t − [i−3])(t − [i−1]) . . .(t − [n−2])

(i−1)(i−2)(i−3) . . .(1)(−1)(i−n)

Which is 1 at t = i−2 and 0 for all other integers

n points (P1,P2, . . . ,Pn)i, which is shorthand for (x1,y1,z1), . . . ,(xn,yn,zn)

41

Blending Functions (cont.)

Need four blending functions for four points:

b1(t) =
t(t −1)(t −2)
(−1)(−2)(−3)

b2(t) =
(t +1)(t −1)(t −2)

(1)(−1)(−2)

b3(t) =
(t +1)t(t −2)
(2)(1)(−1)

b4(t) =
(t +1)t(t −1)
(3)(2)(1)

42

Blending Functions (cont.)

x(t) = x1b1(t)+ x2b2(t)+ x3b3(t)+ x4b4(t)

y(t) = y1b1(t)+ y2b2(t)+ y3b3(t)+ y4b4(t)

z(t) = z1b1(t)+ z2b2(t)+ z3b3(t)+ z4b4(t)

The curve should lie close to the actual curve in the region of the four
points, especially in the middle between P2 and P3.

This is where 0 ≤ t ≤ 1.

43

Shortcomings

The sum of the blending functions is not 1 at all values of t.

We’ve designed them to sum to 1 at integer values of t, not in between.

Suppose all sample points had the same x value: x = x0.

We would expect the curve to have constant values for x at points in
between the sample points.

44

Shortcomings (cont.)

However, approximating the curve yields:

x(t) =
n

∑
i=1

xibi(t)

If xi = x0:

x(t) = x0

n

∑
i=1

bi(t)

The line may wiggle in and out of the plane.

45

Shortcomings (cont.)

• Each section of the curve is connected to the next section through a
point and the curves may have different slopes at the two sections

• Transition of control is not smooth at point Pi is approached, the control
of the other points is reduced to zero

46

A Better Way

• A more natural approach to have a sample point control the curve is to
have the blending function vary from 0 far away from the point to some
maximum value (not necessarily 1) near the point

• We don’t force the curve through a particular point but gently attract it
towards the point

• The resulting curve will follow the general contours of the control points
but may not actually pass through any of them

• The set of blending functions that achieve this and always sum to 1 are
called B-splines

47

