

Adjustment for Steep Slopes

$$
\begin{aligned}
x_{i+1} & =x_{i}+\Delta x \\
& =x_{i}+\frac{\Delta y}{m} \\
& =x_{i}+\frac{1}{m}
\end{aligned}
$$

Bresenham's Line Drawing Algorithm

- Also called the Midpoint Line Algorithm
- This development is based on slopes between 0 and 1
- For other slopes use reflection about an octant axis

DDA Algorithm

- Digital Differential Analyzer
- A DDA is a mechanical device that solves differential equations by numerical methods
- Traces (x, y) by simultaneously incrementing x and y by small steps proportional to the first derivative of x and y

DDA Algorithm Problems

- Since floating point numbers have limited precision,

$$
\frac{d y}{d x}=m
$$

is inexact

- Summing an inexact m repetitively leads to cumulative errors that deviate from the true round $\left(y_{i}\right)$
- Not a problem for short lines
- The floating point computations take time, round () takes time

Explicit Function

Represent the line as an implicit function:

$$
\begin{gathered}
y=m x+b \longrightarrow A x+B y+C=0 \\
f(x, y)=A x+B y+C=0
\end{gathered}
$$

(Note: B is not the b of slope-intercept form)

E Chosen

Increment M in x direction if E is chosen

$$
\begin{aligned}
d_{\text {new }} & =f\left(x_{p}+2, y_{p}+\frac{1}{2}\right) \\
& =A\left(x_{p}+2\right)+B\left(y_{p}+\frac{1}{2}\right)+C \\
d_{\text {old }} & =A\left(x_{p}+1\right)+B\left(y_{p}+\frac{1}{2}\right)+C
\end{aligned}
$$

$$
d_{\text {new }}-d_{\text {old }}=A
$$

Explicit Function

If $\Delta x=x_{1}-x_{0}$ and $\Delta y=y_{1}-y_{0}$, then the slope-intercept form is

$$
y=\frac{\Delta y}{\Delta x} x+b
$$

Thus

$$
0=x \Delta y-y \Delta x+b \Delta x=f(x, y)
$$

and

$$
A=\Delta y, \quad B=-\Delta x, \quad C=b \Delta x
$$

$$
f(x, y) \begin{cases}>0 & \text { if }(x, y) \text { is above the line } \\ =0 & \text { if }(x, y) \text { is on the line } \\ <0 & \text { if }(x, y) \text { is below the line }\end{cases}
$$

Decision Variable

For the midpoint, $f(M)=f\left(x_{p}+1, y_{p}+\frac{1}{2}\right)$
Test the sign of $f(M)$

Let d be a decision variable:
$d=f\left(x_{p}+1, y_{p}+\frac{1}{2}\right)$
$=A\left(x_{p}+1\right)+B\left(y_{p}+\frac{1}{2}\right)+C$
$\int>0$ choose $N E$
$d \begin{cases}>0 & \text { choose } N E \\ =0 & \text { choose either }(E) \\ <0 & \text { choose } E\end{cases}$

$N E$ Chosen

Increment M in both x and y directions if $N E$ is chosen

$d_{\text {new }}=f\left(x_{p}+2, y_{p}+\frac{3}{2}\right)$
$=A\left(x_{p}+2\right)+B\left(y_{p}+\frac{3}{2}\right)+C$
$d_{\text {old }}=A\left(x_{p}+1\right)+B\left(y_{p}+\frac{1}{2}\right)+C$

Thus $f(M)$ need not be computed each time; Δ_{E} need only be added

