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|. Introduction

In most applications involving computation with 3D geometric models, manipulating objects
and generating images of objects are crucial operations. Performing these operations requires
determining for every frame of an animation the spatial_relations between objects. how they
might intersect each other, and how they may occlude each other. However, the objects,
rather than being monolithic, are most often comprised of many pieces, such as by many
polygons forming the faces of polyhedra. The number of pieces may be any where from the
100's to the 1,000,000's. To compute spatial relations between n polygons by brute force
entails comparing every pair of polygons, and so would require O(n2). For large scenes
comprised of 10° polygons, this would mean 1010 operations, which is much more than
necessary.

The number of operations can be substantially reduced to anywhere from O(n logo n)
when the objects interpenetrate (and so in our example reduced to ~106), to as little as
constant time, O(1), when they are somewhat separated from each other. This can be
accomplished by using Binary Space Partitioning Trees, also called BSP Trees or Partitioning
Trees. They provide a computational representation of space that simultaneouly provides a
search structure and arepresentation of geometry. The reduction in number of operations
occurs because Partitioning Trees provide a kind of "spatial sorting". In fact, they are a
generalization to dimensions >1 of binary search trees, which have been widely used for
representing sorted lists. The figure below gives an introductory example showing how a
binary tree of lines, instead of points, can be used to "sort" four geometric objects, as opposed
to sorting symbolic objects such as names.
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Partitioning Tree representation of inter-object spatial relations
Constructing a Partitioning Tree representation of one or more polyhedral objects involves
computing the spatial relations between polygonal faces once and encoding these relations in
a binary tree. This tree can then be transformed and merged with other trees to very
quickly compute the spatial relations (for visibility and intersections) between the polygons
of two moving objects.
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Partitioning Tree representation of intra-object spatial relations

As long as the relations encoded by atree remain valid, which for arigid body isforever,
one can reap the benefits of having generated this tree structure every time the tree is used
in subsequent operations. The return on investment manifests itself as substantially faster
algorithms for computing intersections and visibility orderings. And for animation and
interactive applications, these saving can accure over hundreds of thousands of frames.

Partitioning Trees achieve an elegant solution to a number of important problems in
geometric computation by exploiting two very simple properties occurring whenever a single
plane separates (lies between) two or more objects. 1) any object on one side of the plane
cannot intersect any object on the other side, 2) given a viewing position, objects on the
same side as the viewer can have their images drawn on top of the images of objects on the
opposite side (Painter's Algorithm).



Viewer

Plane Power: sorting objects w.r.t a hyperplane

These properties can be made dimension independent if we use the term "hyperplane” to
refer to planes in 3D, lines in 2D, and in general for d-space, to a (d-1)-dimensional sub-
space defined by a single linear equation. The only operation we will need for constructing
Partitioning Trees is the partitioning of a convex region by a singe hyperplane into two child
regions, both of which are also convex as a result.
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Elementary operation used to construct Partitioning Trees

Partitioning Trees exploit the properties of separating planes by using one very simple but
powerful technique to represent any object or collection of objects: recursive subdivison by

hyperplanes. A Partitioning Tree isthe recording of this process of recursive subdivision in
the form of a binary tree of hyperplanes. Since there is no restriction on what hyperplanes
are used, polytopes (polyhedra, polygons, etc.) can be represented exactly. Affine and
perspective transformations can be applied without having to modify the structure of the
tree itself, but rather by modifying the linear equations representing each hyperplane (with
a vector-matrix product as one does with points).

A Partitioning Tree is a program for performing intersections between the hyperplane's
halfspaces and any other geometric entity. Since subdivsion generates increasingly smaller
regions of space, the order of the hyperplanes ischosen so that following a path deeper into
the tree corresponds to adding more detail, yielding a multi-resolution representation. This



leads to efficient intersection computations. To determine visibility, al that is required is
choosing at each tree node which of the two branches to draw first based solely on which
branch contains the viewer. No other single representation of geometry inherently answers
guestions of intersection and visibility for a scene of 3D moving objects. And this is
accomplished in a computationally efficient and parallelizable manner.

Il. Partitioning Trees as a Multi-Dimensional Search Structure

Spatial search structures are based on the same ideas that were developed in Computer
Science during the 60's and 70's to solve the problem of quickly processing large sets of
symbolic data, as opposed to geometric data, such as lists of people's names. It was discovered
that by first sorting a list of names alphabetically, and storing the sorted list in an array, one
can find out whether some new name is aready in the list in logy n operations using a binary
search algorithm, instead of n/2 expected operations required by a sequential search. Thisis
a good example of extracting structure (alphabetical order) existing in the list of names and
exploiting that structure in subsequent operations (looking up a name) to reduce
computation. However, if one wishes to permit additions and deletions of names while
maintaining a sorted list, then a dynamic data structure is needed, i.e. one using pointers. One
of the most common examples of such a data structure is the binary search tree.

A binary search tree is illustrated in the figure below, where it is being used to represent a
set of integers S ={0, 1, 4, 5, 6, 8 } lying on the real line. We have included both the binary
tree and the hierarchy of intervals represented by this tree. To find out whether a
number/point is already in the tree, one inserts the point into the tree and follows the path
corresponding to the sequence of nested intervals that contain the point. For a balanced tree,
this process will take no more than O(log n) steps; for in fact, we have performed a binary
search, but one using atree instead of an array. Indeed, the tree itself encodes a portion of
the search algorithm since it prescribes the order in which the search proceeds.




This now bring us back to Partitioning Trees, for as we said earlier, they are a generalization
of binary search trees to dimensions >1 (in 1D, they are essentially identical). In fact,
constructing a Partitioning Tree can be thought of as a geometric version of Quick Sort.
Modifications (insertions and deletions) are achieve by merging trees, analogous to merging
sorted lists in Merge Sort. However, since points do not divide space for any dimension >1, we
must use hyperplanes instead of points by which to subdivide. Hyperplanes always partition
a region into two halfspaces regardless of the dimension. In 1D, they look like points since
they are also OD sets; the one difference being the addition of a normal denoting the "greater
than" side. Below we show a restricted variety of Partitioning Trees that most clearly
illustrates the generalization of binary search trees to higher dimensions. (You may want to
call this a k-d tree, but the standard semantics of k-d trees does not include representing
continuous sets of points, but rather finite sets of points.)
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Extension of binary search trees to 2D as a Partitioning Tree

Partitioning Trees are also a geometric variety of Decision Trees, which are commonly used
for classification (e.g. biological taxonomies), and are widely used in machine learning. Decision
trees have also been used for proving lower bounds, the most famous showing that sorting is
Q( n log n) They are also the model of the popular "20 questions® game (I'm thinking of
something and you have 20 yes/no question to guess what it is). For Partitioning Trees, the
guestions become "what side of a particular hyperplane does some piece of geometry lie".

I1l. Visibility Orderings

Visibility orderings are used in image synthesis for visible surface determination (hidden
surface removal), shadow computations, ray tracing, beam tracing, and radiosity. For a given
center of projection, such as the position of a viewer or of a light source, they provide an



ordering of geometric entities, such as objects or faces of objects, consistent with the order in
which any ray originating at the center might intersect the entities. Loosely speaking, a
visibility ordering assigns a priority to each object or face so that closer objects have priority
over objects further away. Any ray emanating from the center or projection that intersects
two objects or faces, will always intersect the surface with higher priority first. The simplest
use of visibility orderings is with the "Painters Algorithm" for solving the hidden surface
problem. Faces are drawn into a frame-buffer in far-to-near order (low-to-high priority), so
that the image of nearer objects/polygons over-writes those of more distant ones.

A visibility ordering can be generated using a single hyperplane; however, each geometric
entity or "object” (polyhedron, polygon, line, point) must lie completely on one side of the
hyperplane, i.e. no objects are allowed to cross the hyperplane. This requirement can always
be induced by partitioning objects by the desired hyperplane into two "halves'. The objects on
the side containing the viewer are said to have visibility priority over objects on the opposite
side; that is, any ray emanating from the viewer that intersects two objects on opposite sides
of the hyperplane will always intersect the near side object before it intersects the far side
object.
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Total Ordering of a Collection of Objects



A single hyperplane cannot order objects lying on the same side, and so cannot provide a
total visibility ordering.
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Consequently, in order to exploit this idea, we must extend it somehow so that a visibility
ordering for the entire set of objects can be generated. One way to do this would be to create a
unique separating hyperplane for evey pair of objects. However, for n objects this would
require n2 hyperplanes, which is too many.

The required number of separating hyperplanes can be reduced to as little as n by using
the geometric version of recursive subdivision (divide and conquer). If the subdivsion is
performed using hyperplanes whose position and orientation is unrestricted, then the result
is a Partitioning Tree. The objects are first separated into two groups by some appropriately
choosen hyperplane (as above). Then each of the two groups are independently partitioned
into two sub-groups (for a total now of 4 sub-groups). The recursive subdivision continues in

a similar fashion until each object, or piece of an object, is in a separate cell of the partitioning.
This process of partitioning space by hyperplanes is naturally represented as a binary tree.

B ‘02 q Partitiog Tree
B\ O AR

1 02 03 o4

Visibility Ordering as Tree Traveral

How can this tree be used to generate a visibility ordering on the collection of objects? For
any given viewing position, we first determine on which side of the root hyperplane the
viewer lies. From this we know that all objects in the near-side subtree have higher priority
than all objects in the far-side subtree; and we have made this determination with only a
constant amount of computation (in fact, only a dot product). We now need to order the



near-side objects, followed by an ordering of the far-side objects. Since we have arecusively
defined structure, any subtree has the same form computationally as the whole tree.
Therefore, we simply apply this technique for ordering subtrees recursively, going left or
right first at each node, depending upon which side of the node's hyperplane the viewer lies.
This results in a traversal of the entire tree, in near-to-far order, using only O(n) operations,
which is optimal (this analysis is correct only if no objects have been split; otherwise it is > n).
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Intra-Object Visibility

The schema we have just described isonly for inter-object visibility, i.e. between individual
objects. And only when the objects are both convex and separable by a hyperplane is the
schema a complete method for determining visibility. To address the general unrestricted
case, we need to solve intr a-object visibility, i.e. correctly ordering the faces of a single object.
Partitioning Trees can solve this problem as well. To accomplish this, we need to change our
focus from convex cells containing objects to the idea of hyperplanes containing faces. Let us
return to the analysis of visibility w.r.t a hyperplane. If instead of ordering objects, we wish to
order faces, we can exploit the fact that not only can faces lie on each side of a hyperplane as
objects do, but they can also lie onthe hyperplane itself. This gives us a 3-way ordering of:
near -> on -> far.
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Ordering of polygons. near -> on -> far

If we choose hyperplanes by which to partition space that always contain a face of an object,
then we can build a Partitioning Tree by applying this schema recursively as before, until
every face lies in some partitioning hyperplane contained in the tree.

Example intra-object Partitioning Tree

To generate a visibility ordering of the faces in this intra-object tree, we use the method
above with one extension: faces lying on hyperplanes are included in the ordering, i.e. at each
node, we generate the visibility ordering of near-subtree -> on-faces -> far-subtree.

Using visibility orderings provides an alternative to z-buffer based algorithms. They
obviate the need for computing and comparing z-values, which is very suspectible to
numerical error because of the perspective projection. In addition, they eliminate the need
for z-buffer memory itself, which can be substantial (80Mbytes) if used at a sub-pixel
resolution of 4x4 to provide anti-aliasing. More importantly, visibility orderings permit
unlimited use of transparency (non-refractive) with no additional computational effort, since
the visibility ordering gives the correct order for compositing faces using alpha blending. And
in addition, if a near-to-far ordering is used, then rendering completely occluded
objects/faces can be eliminated, such as when a wall occludes the rest of a building, using a
beam-tracing based algorithm.

Partitioning Tree as a Hierarchy of Regions



Another way to look at Partitioning Trees isto focus on the hierarchy of regions creating by
the recursive partitioning, instead of focusing on the hyperplanes themselves. This view
helps us to see more easily how intersections are efficiently computed. The key idea is to think
of a Partitioning Tree region as serving as a bounding volume: each node v corresponds to a
convex volume that completely contains all the geometry represented by the subtree rooted

at v. Therefore, if some other geometric enitity, such as a point, ray, object, etc., is found to
not intersect the bounding volume, then no intersection computations need be performed
with any geometry within that volume.

Consider as an example a situation in which we are given some test point and we want to
find which object if any this point lies in. Initially, we know only that the point lies somewhere
in space.
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By comparing the location of the point w.r.t. the first partitioning hyperplane, we can find in
which of the two regions (ak.a. bounding volumes) the point lies. This eliminates half of the

objects.
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By continuing this process recursively, we are in effect using the regions as a hierarchy of

bounding volumes, each bounding volume being a rough approximation of the geometry it
bounds, to quickly narrow our search.
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For a Partitioning Tree of a single object, this region-based (volumetric) view reveals how
Partitioning Trees can provide a multi-resolution representation. As one decends a path of
the tree, the regions decrease in size monotonically. For curved objects, the regions converge
in the limit to the curve/surface. Truncating the tree produces an approximation, aa the
Taylor series approximations of functions.
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Tree Merging

The spatial relations between two objects, each represented by a separate tree, can be
determined efficiently by merging two trees. This is a fundemental operation that can be used
to solve a number of geometric problems. These include set operations for CSG modeling as
well as collision detection for dynamics. For rendering, merging all object-trees into a single
model-tree determines inter-object visibility orderings; and the model-tree can be
intersected with the view-volume to efficiently cull away off-screen portions of the scene and
provide solid cutways with the near clipping plane. In the case where objects are both
transparent and interpenetrate, tree merging acts as a view independent geometric sorting
of the object faces; each tree is used in a manner analogous to the way Merge Sort merges
previously sorted lists to quickly created a new sorted list (in our case, a new tree). The
model-tree can be rendered using ray-tracing, radiosity, or polygon-drawing using afar-to-
near ordering with alpha blending for transparency. An even better alternative is multi-
resolution beam-tracing, since entire occluded subtrees can be elimanted without visiting the
contents of the subtree, and distance subtrees can be pruned to the desired resolution.
Beam-tracing can also be used to efficiently compute shadows.

All of this requires as a basics operation an algorithm for merging two trees. Tree merging
is a recursive process which proceeds down the trees in a multi-resolution fashion, going
from low-res to high-res. It is easist to understand in terms of merging a hierarchy of
bounding volumes. As the process proceeds, pairs of tree regions, ak.a convex bounding
volumes, one from each tree, are compared to determine whether they intersect or not. If



they do not, then the contents of the corresponding subtrees are never compared. This has
the effect of "zooming in" on those regions of space where the surfaces of the two objects
intersect. In the 2D example below, representing two convex polygons, tree merging will
require only O(log n) operations.

/

Merging Partitioning Trees

The algorithm for tree merging is quite simple once you have aroutine for partitioning a
tree by a hyperplane into two trees. The process can be thought of in terms of inserting one
tree into the other in a recursive manner. Given trees Tl and T2, at each node of T1 the
hyperplane at that node is used to partition T2 into two "halves'. Then each half is merged
with the subtree of T1 lying on the same side of the hyperplane. (In actuality, the algorithm
is symmetric w.r.t. the role of T1 and T2 so that at each recursive call, T1 can split T2 or T2
can split T1.)

Merge Bspts : ( T1, T2 : Bspt ) -> Bspt

Types
BinaryPartitioner : { hyperplane, sub-hyperplane }
PartitionedBspt : ( inNegHs, inPosHs : Bspt )

Imports
Merge_Tree_With_Cell : ( T1, T2 : Bspt ) -> Bspt User defined semantics.
Partition_Bspt : ( Bspt, BinaryPartitioner ) -> PartitionedBspt

Definition
IF Tl.is_a cell OR T2.is_a_cell
THEN
VAL := Merge_Tree With _Cell( T1, T2 )
ELSE
Partition_Bspt( T2, Tl.binary_partitioner ) -> T2_partitioned
VAL.neg_subtree :=
Merge Bspts( T1l.neg_subtree, T2 partitioned.inNegHs )
VAL.pos_subtree:=
Merge_Bspts( T1.pos_subtree, T2 partitioned.inPosHs )
END



RETURN VAL
END Merge Bspts

While tree merging is easiest to understand in term of comparing bounding volumes, the
actual mechanism uses sub-hyperplanes, which is more efficient. A sub-hyperplane is
created whenever a region is partitioned by a hyperplane, and it is just the subset of the
hyperplane lying within that region. In fact, al of the illustrations of trees we have used are
drawings of sub-hyperplanes. In 3D, these are convex polygons, and they separate the two
child regions of an internal node. Tree merging uses sub-hyperplanes to simulataneously
determine the spatial relations of four regions, two from each tree, by comparing the two
sub-hyperplanes at the root of each tree. For 3D, this is computed using two applications of
convex-polygon clipping to a plane, and there are three possible outcomes: intersecting, non-
intersecting and coincident. This is the only overtly geometric computation in tree merging;
everything else is data structure manipulation.

Intersecting Non-intersecting Coincident

Three cases when comparing sub-hyperplanes during tree merging

Good Partitioning Trees

For any given set, there exist an arbitrary number of different Partitioning Trees that can
represent that set. This is analogous to there being many different programs for computing
the same function, since a Partitioning Tree may in fact be interpreted as a computation
graph specifying a particular search of space. Similarly, not all programs/algorithms are
equally efficient, and not all searches/trees are equally efficient. Thus the question arises as
to what constitutes a good Partitioning Tree. The answer is atree that represents the set as a
sequence of approximations. This provides a multi-resolution representation. By pruning the
tree at various depths, different approximations of the set can be created. Each pruned
subtree is replaced with a cell containing a low degree polynomial approximation of the set
represented by the subtree.
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Tree Pruning for Multi-Resolution Representations

In figure below, we show two quite different ways to represent a convex polygon, only the
second of which employs the sequence of approximations idea. The tree on the left subdivides
space using lines radiating from the polygonal center, splitting the number of faces in half at
each step of the recursive subdivision. The hyperplanes containing the polygonal edges are
chosen only when the number of faces equals one, and so are last along any path. If the
number of polygonal edges is n, then the tree is of size O(n) and of depth O(log n). In contrast,
the tree on the right uses the idea of a sequence of approximations. The first three
partitioning hyperplanes form a first approximation to the exterior while the next three form
a first approximation to the interior. This divides the set of edges into three sets. For each of
these, we choose the hyperplane of the middle face by which to partition, and by doing so
refine our representation of the exterior. Two additional hyperplanes refine the interior and
divide the remaining set of edges into two nearly equal sized sets. This process proceeds
recursively until all edges are in partitioning hyperplanes. Now, this tree is also of size O(n)
and depth O(log n), and thus the worst case, say for point classification, isthe same for both
trees. Yet they appear to be quite different.



[llustration of bad vs. good trees

This apparent qualitative difference can be made quantitative by, for example, considering
the expected case for point classification. With the first tree, al cells are at depth log n, so the
expected case is the same as the worst case regardless of the sample space from which a point
is chosen. However, with the second tree, the top three out-cells would typically constitute
most of the sample space, and so a point would often be classified as OUT by, on average, two
point-hyperplane tests. Thus the expected case would converge to O(1) as the ratio of
polygon-area/sample-area approaches 0. For line classification, the two trees differ not only
in the expected case but also in the worst case: O(n) vs. O(log n). For merging two trees the
difference is O(n2) vs. O(n log n). This reduces even further to O(log n) when the objects are
only contacting each other, rather overlapping, as is the case for collision detection.

However, there are worst case "basket weaving" examples that do require O(n2) operations.
These are geometric versions of the Cartesian Product, as for example when a checkerboard is
constructed from n horizontal strips and n vertical strips to produce n x n squares. These
examples, however, violate the Principle of Locality: that geometric features are local not
global features. For almost all geometric models of physical objects, the geometric features are
local features. Spatial partitioning schemes can accelerate computations only when the
features are in fact local, otherwise there is no significant subset of space that can be
eliminated from consideration.

The key to a quantitative evaluation, and also generation, of Partitioning Trees is to use
expected case models, instead of worst case analysis. Good trees are ones which have low
expected cost for the operations and distributions of input of interest. This means, roughly,
that high probability regions can be reached with low cost, i.e. they have short paths from the
root the the corresponding node, and similarly low probability regions should have longer
paths. This is exactly the same idea used in Huffman codes. For geometric computation, the
probability of some geometric entity, such as a point, line segment, plane, etc., lying in some



arbitrary region is typically correlated positively to the size of the region: the larger the
region the greater the probability that a randomly chosen geometric entity will intersect that
region.

To compute the expected cost of a particular operation for a given tree, we need to know at
each branch in the tree the probability of taking the left branch, p-, and he probability of
taking the right branch p*. If we assign a unit cost to the partitioning operation, then we can
compute the expect cost exactly, given the branch probabilities, using the following
recurrence relation:

Ecost[ T] =

IF T is a cdl
THEN O

ELSE 1+ p~* Ecost[ T- ] + pt * Ecost[ T* ]

This formula does not directly express any dependency upon a particular operation; those
characteristics are encoded in the two probabilities p- and p*. Once a model for these is
specified, the expected cost for a particular operation can be computed for any tree.

As an example, consider point classification in which a random point is chosen from a
uniform distribution over some initial region R. For a tree region of r with child regions r+
and r- , we need the conditional probability of the point lying in r* and r- given that it liesin
r. For a uniform distribution, this is determined by the sizes of the two child-regions relative
to their parent:

pt =wvol(rt )/ vol(r)
p- =vol( r- ) /vol(r)

Similar models have been developed for line, ray and plane classification. Below we describe
how to use these to build good trees.

Converting B-reps to Trees

Since humans do not see physical objects in terms of binary trees, it isimportant to know
how such atree be constructed from something which is more intuitive. The most common
method is to convert a boundary representation, which corresponds more closely to how
humans see the world, into a tree. In order for a Partitioning Tree to represent a solid object,
each cell of the tree must be classified as being either entirely inside or outside of the object;
thus, each leaf node corresponds to either an in-cell or an out-cell. The boundary of the set
then lies between in-cells and out-cells; and since the cells are bounded by the partitioning
hyperplanes, it is necessary for all of the boundary to lie in the partitioning hyperplanes.



B-rep and Tree representation of a polygon

Therefore, we can convert from a b-rep to a tree simply by using al of the face
hyperplanes as partitioning hyperplanes. The face hyperplanes can be chosen in any order
and the resulting tree will always generate a convex decomposition of the interior and the
exterior. If the hyperplane normals of the b-rep faces are consistently oriented to point to
the exterior, then all left leaves will be in-cells and al right leaves will be out-cells. The
following algorithm summarizes the process.

Brep_to Bspt: Brep b -> Bspt T

IF b == NULL
THEN

T = if a left-leaf then an in-cell else an out-cell
ELSE

h = Choose Hyperplane( b )

{ b+, b-, b0 } = Partition_Brep( b, h )

T.faces = b0

T.pos_subtree = Brep_to Bspt( b*)

T.neg_subtree = Brep_to Bspt( b-)
END

However, this does not tell us in what order to choose the hyperplanes so as to produce the
best trees. Since the only known method for finding the optimal tree is by exhaustive
enumeration, and there are at least n! trees given n unique face hyperplanes, we must
employ heuristics. In 3D, we use both the face planes as candidate partitioning hyperplanes,
as well as planes that go through face vertices and have predetermined directions, such as
aligned with the coordinates axes .

Given any candidate hyperplane, we can try to predict how effective it will be using
expected case models; that is, we can estimate the expected cost of a subtree should we choose
this candidate to be at its root. We will then choose the least cost candidate. Given aregion r
containing boundary b which we are going to partition by a candidate h, we can compute



exactly p* and p- for a given operation, as well as the size of b+ and b-. However, we can only
estimate Ecost[ Tt ] and Ecost[ T~ ]. The estimators for these values can depend only upon a
few simple properties such as number of faces in each halfspace, how many faces would be

split by this hyperplane, and how many faces lie on the hyperplane (or area of such faces).
Currently, we use |b*|" for Ecost[ Tt ], where n typically varies between .8 and .95, and

similarly for Ecost[ T~ ]. We also include a small penalty for splitting a face by increasing its
contribution to b* and b- from 1.0 to somewhere between 1.25 and 1.75, depending upon
the object. We also favor candidates containing larger surface area, both in our heuristic
evalution and by first sorting the faces by surface area and considering only the planes of the
top k faces as candidates.

One interesting consequence of using expected case models is that choosing the candidate
that attempts to balance the tree is usually not the best; instead the model prefers candidates
that place small amounts of geometry in large regions, since this will result in high probability
and low cost subtrees, and similarly large amounts of geometry in small regions. Balanced is
optimal only when the geometry is uniformly distributed, which is rarely the case. More
importantly, minimizing expected costs produces trees that represents the object as a
sequence of approximations, and so in a multi-resolution fashion.
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Balanced is not optimal for non-uniform distributions

Boundary Representations vs. Partitioning Trees

Boundary Representations and Partitioning Trees can be thought of as competing
alternatives or as complementary representations expressing difference aspects of geometry,
the former being topological, the later expressing hierarchical set membership. B-reps are
well suited for interactive specification of geometry, expressing topological deformations, and
scan-conversion. Partitioning Trees are well suited for intersection and visibility calculations.
Their relationship is probably more akin to the capacitor vs. inductor, than the tube vs.
transistor.



The most often asked question iswhat isthe size of a Partitioning Tree representation of a
polyhedron vs. the size of its boundary representation. This, of course, ignores the fact that
expected cost, measured over the suite of operations for which the representation will be
used, is the appropriate metric. Also, boundary representations must be supplimented by
other devices, such as octrees, bounding volumes hierarchies, and z-buffers, in order to
achieve an efficient system; and so the cost of creating and maintaining these structure
should be brought into the equation. However, given the instrinsic methodological difficulties
in performing a compelling empirical comparision, we will close with a few examples giving the
original number of b-rep faces and the resulting tree using our currently implemented tree
construction machinery.

Data Set brep tree faces ratio nodes ratio E[T] %nodes
hang glider man 189 406 2.14 390 2.061.7, 3.4, 214
space shuttle 575 1,006 1.75 927 1.611.2, 25, 132
human head 1 927 1,095 1.21 1,156 1.241.4, 4.4, 250
human head 2 2,566 5,180 2.01 5,104 1.9902, 08, 9.1
Allosaurous 4,072 9,725 2.38 9,914 2.43NA

Lower Manhattan 4,532 5,510 1.22 4,273 0.940.3, 0.6, 10.5
Berkeley CS Bldg. 9,129 9,874 1.08 4,148 0.450.4, 1.3, 146
Dungeon 14,061 20,328 1.4415,732 1.120.1, 0.1, 1.7
Honda Accord 26,033 51,730 1.9842,965 1.65NA

West Point terrain 29,400 9,208 0.31 7636 0.260.1, 0.3, 4.2
US destroyer 45,802 91,928 2.0065,846 1.43NA

The first ratio is number-of-brep-faces/number-of-tree-faces. The second ratio isnumber-
of-brep-faces/number-of-tree-nodes, = where number-of-tree-nodes is the number of
internal nodes. The last column is the expected cost in terms of point, line and plane
classification, respectively, in percentage of the total number of internal nodes, and where
the sample space was a bounding box 1.1 times the minimum axis-aligned bounding box.
These numbers are pessimistic since typical sample spaces would be much larger than an
object's bounding box. Also, the heuristics are controlled by 4 parameters, and these
numbers were generate, with some exceptions, without a search of the parameter space but
rather using default parameters. There are alos quite a number of ways to improve the
conversion process, so it should be possible to do even better.



Binary Space Partitioning Tree Summary

A.Primary operations
1. intersections : between geometric sets (polyhedra, polygons, lines, points).
Interpret tree as a hierarchy of (bounding) volumes
2. visibility orderings : viewer or light source dependent.

Interpret tree as a hierarchy of separating planes

B. Secondary operations
1. set operations : union, intersection and difference between solid objects
2. collision detection
3. view-volume clipping : eliminating objects not within current field of view
a. includes solid cutaways
visible surface determination
shadows
ray-tracing
radiosity
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image segmentation
a. reconstruction of objects from video, MRI, CT, etc.
b. compression

C. Efficiency
1. Utilizing temporally invariant spatial properties
a. knowledge of spatial relations encoded in tree structure exploited
over many frames to reduce cost of computation for each frame
b. tree structure is preserved by affine and perspective transformations; and so
objects may move without changing the tree structure. Not true of octrees.
2. Multi-resolution representation
Interpret a tree as a hierarchy of convex bounding volumes.
a. intersections
IFno intersection with bounding-volume
THEN there can be no intersections with contents of volume, so stop.
ELSE continue with contents of volume, and so on, recursively.
Reduces O(n2) operation to O(n log n), or O(n) to O(log n)
b. rendering
Tree pruning permits discarding detail too small to see in current view
(no manual creation of a levels of detail)
3. Visibility ordering



a. comparison to z-buffer
1. no numerical problems created by perspective projection
2. no z-buffer memory
3. unlimited use of transparency
4 anti-aliasing without subpixel color and z buffers. saves ~16X in

this kind of memory (10Mb vs 160Mb), plus reduces computation.
5. for shadows, no quantization errors, which are amplified by
the inverse perspective projection, plus all of the above points.

b. visibility culling : do not draw objects occluded by closer objects, e.g. wall
occluding rest of a building. Achieved by near-to-far ordering using
multi-resolution beam-tracing.

c. transparency: visibility ordering solves this for a single tree.

For multiple objects, the required ordering is achieve by merging trees,
which can be thought of as merging "pre-sorted lists".
4. Linear equations

Computations involve only linear equations - much cheaper than non-linear.
Curved surfaces are approximated as a sequence of piecewise linear approx.
which converge to the surface.

5. Parallelization

A partitioning tree is a computation graph (data-flow graph, flow chart),
describing all inherent parallelization available. Tree branches indicate
independent computation while tree paths indicate pipeline-able computation.
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