\qquad
The point values for each question is given within []. The total number of points for this assignment is 37 .
Most of these problems have a single number for an answer. For full credit (or partial credit if your answer is incorrect), show how you obtained your result.
[4] 1. Given the truth values A true, B false, C true, what is the truth value of each of the following statements?
(a) $A \wedge(B \vee C)$
(b) $(A \wedge B) \vee C$
(c) $\neg(A \vee B) \wedge C$
(d) $\neg A \vee(\neg B \wedge C)$
5. Justify each step in the proof sequence of $\quad \neg A \wedge B \wedge[B \rightarrow(A \vee C)] \rightarrow C$

1. $\neg A$
2. B
3. $B \rightarrow(A \vee C)$
4. $A \vee C$
5. $\neg(\neg A) \vee C$
6. $\neg A \rightarrow C$
7. C
8. Construct truth tables for the following statements. Show intermediate results in extra columns. Note any tautologies or contradictions.
(a) $A \wedge(\neg A \vee \neg B)$
(b) $(A \rightarrow B) \rightarrow[(A \vee C) \rightarrow(B \vee C)]$
(c) $A \rightarrow(B \rightarrow A)$
(d) $A \wedge B \leftrightarrow \neg B \vee \neg A$
9. In a certain country every inhabitant is either a truth teller (who always tells the truth) or a liar (who always lies). Traveling in this country you meet two of the inhabitants, Pat and Mel. Pat says, "If I am a truth teller, then Mel is a truth teller."
(a) Is Pat a truth teller or a liar?
(b) Is Mel a truth teller or a liar?

Provide mathematical justification for your answers.
4. Justify each step in the proof sequence of $\quad P \wedge(Q \rightarrow R) \rightarrow[Q \rightarrow(P \wedge R)]$

1. P
2. $Q \rightarrow R$
3. Q
4. R
5. $P \wedge R$
6. Use propositional logic (not a truth table) to prove the validity of $\quad \neg A \wedge(A \vee B) \rightarrow B$
7. Use propositional logic (not a truth table) to prove the validity of $\quad(P \rightarrow Q) \wedge[P \rightarrow(Q \rightarrow R)] \rightarrow(P \rightarrow R)$
8. Use propositional logic (not a truth table) to prove the validity of $\quad(P \rightarrow Q) \rightarrow(\neg Q \rightarrow \neg P)$
