The point values for each question is given within []. The total number of points for this assignment is 37.

Most of these problems have a single number for an answer. For full credit (or partial credit if your answer is incorrect), show how you obtained your result.

- [4] 1. Given the truth values A true, B false, C true, what is the truth value of each of the following statements?
 - (a) $A \wedge (B \vee C)$
 - (b) $(A \wedge B) \vee C$
 - (c) $\neg (A \lor B) \land C$
 - (d) $\neg A \lor (\neg B \land C)$
- [8] 2. Construct truth tables for the following statements. Show intermediate results in extra columns. Note any tautologies or contradictions.
 - (a) $A \wedge (\neg A \vee \neg B)$
 - (b) $(A \rightarrow B) \rightarrow [(A \lor C) \rightarrow (B \lor C)]$
 - (c) $A \rightarrow (B \rightarrow A)$
 - (d) $A \wedge B \leftrightarrow \neg B \vee \neg A$
- [4] 3. In a certain country every inhabitant is either a truth teller (who always tells the truth) or a liar (who always lies). Traveling in this country you meet two of the inhabitants, Pat and Mel. Pat says, "If I am a truth teller, then Mel is a truth teller."
 - (a) Is Pat a truth teller or a liar?
 - (b) Is Mel a truth teller or a liar?

Provide mathematical justification for your answers.

- [3] 4. Justify each step in the proof sequence of $P \land (Q \rightarrow R) \rightarrow [Q \rightarrow (P \land R)]$
 - 1. *F*
 - 2. $Q \rightarrow R$
 - 3. *Q*
 - 4. R
 - 5. $P \wedge R$
- [3] 5. Justify each step in the proof sequence of $\neg A \land B \land [B \rightarrow (A \lor C)] \rightarrow C$
 - 1. ¬*A*
 - 2. B
 - 3. $B \rightarrow (A \lor C)$
 - 4. $A \lor C$
 - 5. $\neg(\neg A) \lor C$
 - 6. $\neg A \rightarrow C$
 - 7. *C*
- [5] 6. Use propositional logic (not a truth table) to prove the validity of $\neg A \land (A \lor B) \to B$
- [5] 7. Use propositional logic (not a truth table) to prove the validity of $(P \to Q) \land [P \to (Q \to R)] \to (P \to R)$
- [5] 8. Use propositional logic (not a truth table) to prove the validity of $(P \to Q) \to (\neg Q \to \neg P)$