MATH 280 Discrete Mathematical Structures Assignment #4

Name _____

The point values for each question appear within []. The total number of points for this assignment is 42.

[6] 1. Justify each step in the proof sequences.

(a)	(a) $P \land (Q \to R) \Rightarrow [Q \to (P \land R)]$			
		Statement	Reason	
	1.	Р		
		$Q \to R$		
	3.	Q		
	4.			
	5.	$P \wedge R$		
(b)	$\neg A \land B \land [B \to (A \lor C)] \Rightarrow C$			
		Statement	Reason	
	1.	$\neg A$		
		$\neg A$		
		B		
	3. 4.	$B \\ B \to (A \lor C) \\ A \lor C$		
	3. 4. 5.	$B \\ B \to (A \lor C) \\ A \lor C \\ \neg (\neg A) \lor C$		
	3. 4. 5.	$B B \to (A \lor C) A \lor C \neg (\neg A) \lor C \neg A \to C$		

[20] 2. Provide a propositional logic proof sequence (not a truth table) to prove the validity of the following arguments.

- (a) $\neg A \land (A \lor B) \Rightarrow B$ (b) $(P \to Q) \land [P \to (Q \to R)] \Rightarrow (P \to R)$ (c) $(P \to Q) \Rightarrow (\neg Q \to \neg P)$ (d) $A \to (B \to C) \Rightarrow B \to (A \to C)$
- [16] 3. Using the predicate symbols shown and appropriate quantifiers, write each English language statement as a predicate wff. The domain is the whole world.
 - B(x) is "x is a ball."
 - R(x) is "x is round."
 - *S*(*x*) is "*x* is used in soccer."
 - (a) All balls are round.
 - (b) Some balls are not round.
 - (c) Not all balls are soccer balls.
 - (d) Some things are used in soccer.
 - (e) All soccer balls are round.
 - (f) Some balls are round, but soccer balls are not.
 - (g) Every round ball is a soccer ball.
 - (h) If a ball is not round, then it is not a soccer ball.