\qquad
The point values for each question is given within []. The total number of points for this assignment is 18.
[2] 1. Given set $A=\{0,1,2,3\}$ and relation $R=\{(0,1),(0,2),(1,1),(1,3),(2,2),(3,0)\}$, compute R^{+}.
[4] 2. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$. Determine which of the following relations are functions.
(a) $f \subseteq A \times B$, where $f=\{(1, a),(2, b),(3, c),(4, d)\}$.
(b) $g \subseteq A \times B$, where $g=\{(1, a),(2, a),(3, b),(4, d)\}$.
(c) $h \subseteq A \times B$, where $h=\{(1, a),(2, b),(3, c)\}$.
(d) $k \subseteq A \times B$, where $k=\{(1, a),(2, b),(2, c),(3, a),(4, a)\}$.
[10] 3. For each of the following mappings from the given domain to the given codomain, write \mathbf{N} if the mapping is not a function, write \mathbf{F} if the mapping is a function that is neither injective nor surjective, write \mathbf{S} if the mapping is a surjective function, write \mathbf{I} if the mapping is an injective function, write \mathbf{B} if the mapping is a bijective function, and, if the mapping is a bijection, provide f^{-1}.
(a) $f: \mathbb{Z} \rightarrow \mathbb{N}, \quad f(x)=x^{2}+1$
(b) $f: \mathbb{Z} \rightarrow \mathbb{Q}, \quad f(x)=\frac{1}{x}$
(c) $f: \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Q}, \quad f(x, y)=\frac{x}{y+1}$
(d) $f: \mathbb{N} \rightarrow \mathbb{N}, \quad f(x)=2^{x}$
(e) $f: \mathbb{N} \rightarrow \mathbb{N}, \quad f(x)=\left\{\begin{array}{cc}x+1 & \text { if } x \text { is even } \\ x-1 & \text { if } x \text { is odd }\end{array}\right.$
[2] 4. If A and B are both finite sets, how many different functions are there from A to B ? Justify your answer. (Note: This is a combinatorics problem. As usual, once you think you have found the solution, see if your solution works for a couple of small sets. If it does not work, you know your solution is wrong; if it does work, you have some evidence that your solution may be correct. Your "testing" of your solution in this manner is not the required justification; justify your answer with concepts from combinatorics.)

