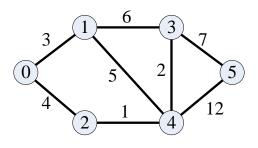
MATH 280 Discrete Mathematical Structures Assignment #9

Name ____

The point values for each question is given within []. The total number of points for this assignment is 35.

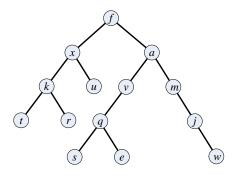
1. Consider graph *G*:



- [2] (a) Does *G* contain an Eulerian path? Why or why not?
- [2] (b) Is *G* Hamiltonian? Why or why not?
- [4] (c) We can use Dijkstra's Algorithm to compute the shortest path from vertex 0 to all the other vertices in graph G. Complete each of the tables below that represent the state of the data structures used by Dijkstra's algorithm each time a vertex's shortest distance from vertex 0 becomes known.

Step 1	Vertex	Known	Distance	Previous	Step 4	Vertex	Known	Distance	Previous
	0	True	0	-1		0	True	0	-1
	1	False	3	0		1			
	2	False	4	0		2			
	3	False	∞	-1		3			
	4	False	∞	-1		4			
	5	False	∞	-1		5			
Step 2	Vertex	Known	Distance	Previous	Step 5	Vertex	Known	Distance	Previous
	0	True	0	-1		0	True	0	-1
	1					1			
	2					2			
	3					3			
	4					4			
	5					5			
Step 3	Vertex	Known	Distance	Previous	Step 6	Vertex	Known	Distance	Previous
	0	True	0	-1		0	True	0	-1
	1					1			
	2					2			
	3					3			
	4					4			
	5					5			

- [2] 2. Which of the graphs in Figure 9.2.11 of your textbook are isomorphic? Produce the bijection for one pair of isomorphic graphs.
- [1] 3. How many edges does K_{10} have? Justify your answer.



5. Consider the following table of letter frequencies for a particular data set:

Letter	Frequency	Code	
A	15		
E	25		
I	10		
0	30		
U	15		
Y	5		

[3]

[3]

- (a) Construct a Huffman tree to be used to derive a minimal prefix code for the letters.
- [2] (b) Complete the last column in the table with the bitstrings for the prefix code derived from your Huffman tree.
 - 6. For each of the following mathematical structures circle G if the mathematical structure is a group, M if it is just a monoid, or N if it is neither a group nor a monoid.
 - (a) G M N $(\mathbb{R},+)$
 - (b) $G M N (\mathbb{Z}, \cdot)$
 - (c) $G M N (\mathbb{N}, -)$
 - 7. Determine which of the following mathematical structures are groups. For a group, you need to show closure, associativity, identity, and invertibility; otherwise, you need only show that one of these properties does not hold.
- [3] (a) $(\{-1,1\},\cdot)$, where \cdot is normal multiplication.
- [3] (b) (\mathbb{Z},\diamond) , where $a \diamond b$ is the larger of a and b.
- [3] 8. Show that the set of even integers form a subgroup of $(\mathbb{Z}, +)$.
 - 9. Consider the monoid $M_1 = (\mathbb{Z}, +)$, where + is normal integer addition, and the monoid $M_2 = (A, +)$, where A is the set of 2×2 integer matrices and + is normal matrix addition. Next consider the function $f : M_1 \to M_2$, such that $f(x) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$.
- [3] (a) Show that f is a homomorphism from M_1 to M_2 .
- [1] (b) Is *f* an isomorphism?