\qquad
The point values for each question is given within []. The total number of points for this assignment is 44 .

1. Consider the grammar $\langle T, N, S, P\rangle$, where $T=\{+, *,(), n\},, N=\{S\}, S=S$, and P is defined by

$$
S \quad \rightarrow \quad S+S|S * S|(S) \mid n
$$

Provide parse trees for the following strings:
3. Let L be generated from the grammar $G=\langle T, N, S, P\rangle$, where:
$T=\{*, /,+,-,(), 0,1,2,3,4,5,6,7,8,9\},$,
$N=\{S, A, B, F, T, I, D\}$,
and P consists of

$$
\begin{aligned}
& S \rightarrow F A \\
& A \rightarrow+F A|-F A| \lambda \\
& F \rightarrow T B \\
& B \rightarrow * T B|/ T B| \lambda \\
& T \rightarrow I \mid(S) \\
& I \rightarrow D I \mid D \\
& D \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{aligned}
$$

Provide parse trees for the following strings:
(a) $2+2$
(b) $23 *(6-31)+11$
(c) $(20-(10-5)) / 2$
4. Consider the set of all bitstrings that begin and end with a 1.
(a) Provide a grammar for the language.
(b) Use your grammar to produce a parse tree for the string 10101
5. Provide a regular expression for the set recognized by the following finite automaton:

6. Provide regular expressions for the following sets:
(a) bitstrings containing an even number of 0 s
(b) bitstrings that begin with a 0 and end with 010
7. Provide a finite automaton that recognizes the set of bitstrings that begin with a 0 and end with 010 .
8. Provide a context-free grammar that generates the language $L=\left\{s s^{R} \mid s \in\{0,1\}^{*}\right.$ and s^{R} is the reverse of string $\left.s\right\}$.
9. Consider the regular expression $\left(1^{*} 0(01)^{*}\right) \mid\left(00^{*}\right)$.
(a) Provide a context-free grammar $G=\langle T, N, S, P\rangle$ for strings represented by the regular expression.
(b) Given your G, draw a parse tree for 00000 .
(c) Given your G, draw a parse tree for 00101.
(d) Given your G, draw a parse tree for 1110 .
10. (Optional) Build a Turing machine that recognizes the language $L=\left\{s s^{R} \mid s \in\{0,1\}^{*}\right.$ and s^{R} is the reverse of string $\left.s\right\}$. Sample strings in L include $\lambda, 00,11,0110,1001$, and 01011010 . Use the emulator described in class to test your Turing machine code.

