\qquad
The point values for each question is given within []. The total number of points for this assignment is 34 .
Most of these problems have a single number for an answer. For full credit (or partial credit if your answer is incorrect), show how you obtained your result.
[4] 1. Given the truth values p true (or 1), q false (or 0), and r true (or 1), what is the truth value of each of the following statements?
(a) $p \wedge(q \vee r)$
(b) $(p \wedge q) \vee r$
(c) $\neg(p \vee q) \wedge r$
(d) $\neg p \vee(\neg q \wedge r)$
[8] 2. Complete the following truth tables. Show intermediate results in extra columns. Note any tautologies or contradictions.

p	q	$p \wedge(\neg p \vee \neg q)$
0	0	
0	1	
1	0	
1	1	

p	q	r	$(p \rightarrow q) \rightarrow[(p \vee r) \rightarrow(q \vee r)]$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

p	q	$p \rightarrow(q \rightarrow p)$
0	0	
0	1	
1	0	
1	1	

p	q	$p \wedge q \leftrightarrow \neg q \vee \neg p$
0	0	
0	1	
1	0	
1	1	

[5] 3. Consider the truth table for a new logical operator, \diamond :

P	Q	$P \diamond Q$
0	0	1
0	1	0
1	0	0
1	1	0

Prove that \diamond is sufficient to represent any logical statement. To do this, you must show how to achieve \neg, \wedge, \vee, \rightarrow, and \leftrightarrow using only \diamond. (Hint: Once you have shown how you can use \diamond to implement a standard logical operator, you can use that standard operator to derive other standard operators.)
4. In a certain country every inhabitant is either a truth teller (who always tells the truth) or a liar (who always lies). Traveling in this country you meet two of the inhabitants, Pat and Mel. Pat says, "If I am a truth teller, then Mel is a truth teller."
(a) Is Pat a truth teller or a liar?
(b) Is Mel a truth teller or a liar?

Provide mathematical justification for your answers.
[3] 5. Justify each step in the proof sequence of $\quad P \wedge(Q \rightarrow R) \Rightarrow[Q \rightarrow(P \wedge R)]$

1. P
2. $Q \rightarrow R$
3. Q
4. R
5. $P \wedge R$
[3] 6. Justify each step in the proof sequence of $\neg A \wedge B \wedge[B \rightarrow(A \vee C)] \Rightarrow C$
6. $\neg A$
7. B
8. $B \rightarrow(A \vee C)$
9. $A \vee C$
10. $\neg(\neg A) \vee C$
11. $\neg A \rightarrow C$
12. C
[4] 7. Use propositional logic (not a truth table) to prove the validity of $\neg A \wedge(A \vee B) \Rightarrow B$
[4] 8. Use propositional logic (not a truth table) to prove the validity of $\quad(P \rightarrow Q) \wedge[P \rightarrow(Q \rightarrow R)] \Rightarrow(P \rightarrow R)$
