The point values for each question is given within []. The total number of points for this assignment is 34.

Most of these problems have a single number for an answer. For full credit (or partial credit if your answer is incorrect), show how you obtained your result.

- [4] 1. Given the truth values *p* **true** (or 1), *q* **false** (or 0), and *r* **true** (or 1), what is the truth value of each of the following statements?
 - (a) $p \wedge (q \vee r)$
 - (b) $(p \land q) \lor r$
 - (c) $\neg (p \lor q) \land r$
 - (d) $\neg p \lor (\neg q \land r)$
- [8] 2. Complete the following truth tables. Show intermediate results in extra columns. Note any tautologies or contradictions.

p	q	$p \wedge (\neg p \vee \neg q)$
0	0	
0	1	
1	0	
1	1	

p	q	r	$(p \to q) \to [(p \lor r) \to (q \lor r)]$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$\begin{array}{c|cccc} p & q & p \to (q \to p) \\ \hline 0 & 0 & \\ 0 & 1 & \\ 1 & 0 & \\ 1 & 1 & \\ \end{array}$$

[5] 3. Consider the truth table for a new logical operator, \diamond :

P	Q	$P \diamond Q$
0	0	1
0	1	0
1	0	0
1	1	0

Prove that \diamond is sufficient to represent *any* logical statement. To do this, you must show how to achieve \neg , \wedge , \vee , \rightarrow , and \leftrightarrow using only \diamond . (Hint: Once you have shown how you can use \diamond to implement a standard logical operator, you can use that standard operator to derive other standard operators.)

- 4. In a certain country every inhabitant is either a truth teller (who always tells the truth) or a liar (who always lies). Traveling in this country you meet two of the inhabitants, Pat and Mel. Pat says, "If I am a truth teller, then Mel is a truth teller."
 - (a) Is Pat a truth teller or a liar?
 - (b) Is Mel a truth teller or a liar?

Provide mathematical justification for your answers.

- 5. Justify each step in the proof sequence of $P \land (Q \rightarrow R) \Rightarrow [Q \rightarrow (P \land R)]$ [3]
 - 1. *P*
 - 2. $Q \rightarrow R$
 - 3. *Q* 4. *R*

 - 5. $P \wedge R$
- 6. Justify each step in the proof sequence of $\neg A \land B \land [B \rightarrow (A \lor C)] \Rightarrow C$ [3]
 - 1. ¬*A*
 - 2. *B*
 - 3. $B \rightarrow (A \lor C)$ 4. $A \lor C$

 - 5. $\neg(\neg A) \lor C$ 6. $\neg A \to C$
- [4] 7. Use propositional logic (not a truth table) to prove the validity of $\neg A \land (A \lor B) \Rightarrow B$
- 8. Use propositional logic (not a truth table) to prove the validity of $(P \to Q) \land [P \to (Q \to R)] \Rightarrow (P \to R)$ [4]