The point values for each question is given within []. The total number of points for this assignment is 21.

1. Consider the following table of letter frequencies for a particular data set:

Letter	Frequency	Code
А	15	
Е	25	
I	10	
0	30	
U	15	
Y	5	

- [3] (a) Construct a Huffman tree to be used to derive a minimal prefix code for the letters.
- [2] (b) Complete the last column in the table with the bitstrings for the prefix code derived from your Huffman tree.
 - 2. For each of the following mathematical structures circle G if the mathematical structure is a group, M if it is just a monoid, or N if it is neither a group nor a monoid.
 - (a) $G M N (\mathbb{R}, +)$

[3]

- (b) $GMN(\mathbb{Z},\cdot)$
- (c) $GMN(\mathbb{N}, -)$
- 3. Determine which of the following mathematical structures are groups. For a group, you need to show closure, associativity, identity, and invertibility; otherwise, you need only show that one of these properties does not hold.
- [3] (a) $(\{-1,1\},\cdot)$, where \cdot is normal multiplication.
- [3] (b) (\mathbb{Z}, \diamond) , where $a \diamond b$ is the larger of a and b.
- [3] 4. Show that the set of even integers form a subgroup of $(\mathbb{Z}, +)$.
 - 5. Consider the monoid $M_1 = (\mathbb{Z}, +)$, where + is normal integer addition, and the monoid $M_2 = (A, +)$, where A is the set of 2×2 integer matrices and + is normal matrix addition. Next consider the function $f: M_1 \to M_2$, such that $f(x) = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$.
- [3] (a) Show that f is a homomorphism from M_1 to M_2 .
- [1] (b) Is f an isomorphism?