
Facing Uncertainty in Web Service
Compositions

Professor Germán H. Alférez, Ph.D.
School of Engineering and Technology,
Universidad de Montemorelos, Mexico
!
!

Software also runs in
complex &
heterogeneous
computing
infrastructures. 	

!

Translate the ideas of
adaptation in the natural
world to software.

MotivationMotivation

Adaptability is emerging as a necessary
capability of highly-dynamic systems

(Hong et al., 2009).

Motivation

Motivation

Systems based on Web service compositions

Serv. Op. A

Serv. Op. E

x

Serv. Op. C Serv. Op. D

Serv. Op. B

x

Dynamic adaptations: the service composition
self-adjusts at runtime to do the following: 	

!

• Keep the quality of the service composition
!

• Offer extra functionality depending on the
context	

!

• Protect the system	

!

• Make the system more usable

Motivation

Related work on dynamic adaptation of service
compositions has traditionally tended to focus on:	

1. Variability
constructs at the
language level

1. Variability
constructs at the
language level

Motivation

2. Brokers

It can hinder reasoning
about adaptations with
complex and error-
prone scripts (Fleurey
and Solberg, 2009)

1. Variability
constructs at the
language level

Motivation

by a hVariantsi container element. Each of these vari-
ants has a name as indicated by the name attribute, and
associated BPEL code to be placed in the process defini-
tion, defined by the hBpelCodei element. These variation
points can be placed inside a BPEL process in any place
where a single activity (such as hinvokei) or activity con-
tainer (such as hsequencei) can be placed. An example
can be seen in Fig. 3.

Because there may be many of these variation points
throughout a BPEL process and they will often not be
isolated from each other, it is also possible to capture
higher-level variation points which describe the relations
between the variation points inside the process. In VxB-
PEL, these are called ‘‘configurable variation points”
and are contained in hConfigurableVariation-
Pointi elements. Each of these configurable variation
points also has variants, hVarianti, enclosed in the
hVariantsi element, and for each of these variants an
element hRequiredConfigurationi exists, which indi-
cate for each high level variant what lower-level variants
need to be selected through a number of hVPChoicei ele-
ments. In other words, these high-level variation points
cover realization relations. The only variation points that
should be actively selected are these, as then the lower-
level variation points will automatically be set accord-
ingly. To help the user (or a process that automates pro-
cess reconfiguration) select the correct variant,
information is added about the variation points and the
variants in the hRationalei and hVariantInfoi ele-
ments. If this information is formalized, automatic config-
uration is possible. The initial configuration of each
configurable variation point must be defined through the
defaultVariant attribute.

The configurable variation points are defined inside a
process definition. Fig. 4 shows that these configurable
variation points are defined in a container just before the
end tag of the process (h/processi), namely
hConfigurableVariationPointsi.

3.2. Supporting various types of variability modeling

The idea behind the VxBPEL extensions was to model
variability generically. That is, VxBPEL was designed to
be able to model all these types in the same way and thus
have more flexibility. We briefly discuss how to model each
type of variability with VxBPEL.

3.2.1. Service replacement
This actually covers both the first (replacing a service by

one with the same interface) and second (replacing a service
by one with a different interface) type. Although BPEL
itself allows services with identical interfaces to be bound
at run-time, it is conceivable one wants to define explicitly
which service is to be used for which configuration of the
system. In that case, an extra partner link could be added
for each variant, and each of these variants would call a
different service. In VxBPEL:

As the actual interface for a service is captured in the
definition of the partnerLink, one can see that modeling
a variation point as such means that it is possible to define
both invoke statements with different values for the
partnerLink parameters, defined elsewhere, and thus
allowing both types of variability to be captured. Note that
it is possible for both services to have different input and
output variables, in which case the surrounding statements
which prepare a message for sending will also need to be
adapted.

3.2.2. Service parameters
This type of variability is modelled similarly to the pre-

vious type. However, it is dependent on how the parame-
ters for this service need to be set: either by altering the
message sent to this service, or by first invoking a different
operation of a service in order to set parameters for a next
request. Surrounding statements will need to be adapted, in
the first case by an invoke statement to call a different
operation, or in the second case by an assign statement
to change the message contents. Suppose a service is nor-
mally called without setting parameters beforehand (i.e.,
using the default settings):

and one wants to be able to set parameters for a service
first, by invoking an operation that sets the service
parameters:

262 M. Koning et al. / Information and Software Technology 51 (2009) 258–269

Koning et al., 2009

Need to manage
adjustments at a
higher level of
abstraction.

Most research works lack
support for analyzing the
inherent variability of
dynamic adaptation at
design time

2. Brokers

Motivation

Serv. Op. A

Var. Point Y

x

Serv. Op. C Var. Point X

Serv. Op. B

x

Broker

Serv. Op. D

Serv. Op. E

Serv. Op. F

Serv. Op. G

chooses

applies

applies

Need to manage variability at design time and
at runtime.

Tendency: dynamic adaptation of service compositions
in the closed-world. However, the world is
increasingly open!

Motivation

Closed World Open World

Stable contexts (the context
changes slowly)

Dynamic contexts (focused on
ubiquitous computing infrastructures.
The context changes rapidly)

Anticipated changes (foreseen
context events)

Unanticipated changes (unknown
context events)

Need to manage dynamic adjustments in the
unpredictable open world.

Contributions

An approach to manage
some situations of
uncertainty in the
open world by
dynamically evolving
service compositions
through models at
runtime.	

Need to manage adjustments at
a higher level of abstraction.

Need to manage dynamic
adjustments in the unpredictable
open world.

Contributions

Dynamic evolution: “The process
of moving the service composition to
a new version (which cannot be
supported by predefined dynamic
adaptations) in order to manage
unknown context events at
runtime.” (Alférez and Pelechano,
MODELS 2012)

An approach to manage some situations of uncertainty
in the open world by dynamically evolving service
compositions through models at runtime.	

Contributions

An approach to manage some situations of uncertainty
in the open world by dynamically evolving service
compositions through models at runtime.	

Inactive Active Active

Active Active

InactiveActive Active

Active

Inactive Active Active

Active Active

InactiveActive Active

Inactive Active

Active

InactiveActive Active

Inactive

Inactive ActiveActive

Inactive Active

Active

InactiveActive Active

Inactive

Inactive Activeadapts

Inactive Active Active

Active Active

InactiveActive Active

Inactive Active

Active

InactiveActive Active

Inactive

Inactive ActiveActive

Inactive Active

Active

InactiveActive Active

Inactive

Inactive Active

Inactive Active

Active

InactiveActive Active

Active

Active

Active

Active

Active

Active

Active

Active

adapts evolves

Dynamic adaptations are carried out to make punctual

changes in the service composition with “known” adaptation
policies. Dynamic adaptations face particular “known” events in

the closed world (Alférez and Pelechano, SPLC 2011; Alférez et
al., JSS Elsevier 2014).

Dynamic evolutions imply a gradual structural or

architectural growth into a better state in order to face
uncertainty in the open world (Alférez and Pelechano, MODELS
2012; Alférez and Pelechano, ICWS 2013)

Contributions

In the open world, uncertainty is
c a u s e d b y h o w t h e s e r v i c e
composit ion should deal with
unknown context events.
!

An approach to manage some situations of uncertainty
in the open world by dynamically evolving service
compositions through models at runtime.	

Contributions

Models at runtime: “Causally
connected self-representations of the
associated system that emphasize
the structure, behavior, or goals of
the system from a problem space
perspective” (Blair, 2009).

An approach to manage some situations of uncertainty
in the open world by dynamically evolving service
compositions through models at runtime.	

Contributions

A tool-supported
software engineering
approach for the
development of
context-aware service
compositions from
design time to
execution.

Need to manage
variability at design time
and at runtime.

Contributions

A tool-supported software engineering approach for
the development of context-aware service compositions
from design time to execution.
!

Design Time: Model-Driven
Engineering

Runtime: Autonomic Computing
!

• AC is an initiative proposed by
IBM. 	

!

• Goal: to develop computer
systems with self-management
capabilities.

Contributions

Solution

Modeling to Face Uncertainty in the Open World

Solution - Modeling to Face Uncertainty in the Open World

Tactics are abstract last-resort surviving actions to
preserve the requirements that can be negatively
impacted by unknown context events (Alférez and
Pelechano, MODELS 2012).

How to preserve expected requirements when the
service composition faces unknown context events in the
open world?

Solution - Modeling to Face Uncertainty in the Open World

Tactics try to reduce the impact of unknown context
events in the open world.

• Goal: To Win.	

• Unknown or unforeseen events:
Surprise assaults.	

• What to do? Choose among a set
of tactics to reach the goal - to
scape vs. to do a frontal attack. 	

• Tactics are known
beforehand, but soldiers do
not know to which specific
arising unknown context
events they will be applied.Known Unknowns

Solution - Modeling to Face Uncertainty in the Open World

Pieces of knowledge during execution to achieve dynamic
evolution of service compositions.

Solution - Modeling to Face Uncertainty in the Open World

Barnes & Noble Books

Search
Book

Show Book
Info

Show Related
Titles

x + +

book not found

book found

Shopping Cart
Google

Authentication

Payment
Calculator

Credit Card
Payment

x

add more books

checkout

x

Invoice
Delivery

Shipment+

x invalid card

+

valid card

Book Management

Amazon Books

Book
Searching

Book
Description

Related
Titlesx

book not found

book found

Barnes & Noble Books Variant Model

Amazon Books Variant Model

variation point

Base Composition Model

commonality

authenticated

x
unauthenticated

Composition Model

Solution - Modeling to Face Uncertainty in the Open World

Extended	

Business Process

Model and Notation
(BPMN)

Solution - Modeling to Face Uncertainty in the Open World

Requirements Model

High
Security

High
Performance

Temporal
Separation

Deception
Introduce

Concurrency

goal

softgoal

tactic

Keep Alive the
Service Composition

24/7
Availability

Active
Redundancy

Shadow
Operation

+

++
++ +

+

Goal Model (Liu and Yu, 2004; Yu, 2009)

Solution - Modeling to Face Uncertainty in the Open World

Deception

Log Intruder's Activities Manage Sensors
Send E-mail to System

Administrator

Restriction:

It can run in parallel.

Deception Tactic

Log Intruder's
Activities

Manage
Sensors

+ Send E-mail to
System Administrator+

+

Tactic Models

Tactic models express the tactical functionality to be
triggered on the service composition to preserve
requirements.	

!

• They are causally connected to Web services that
implement the tactical functionality. 	

• They are merged into the composition model at
runtime.	

!
!

Solution - Modeling to Face Uncertainty in the Open World

150 modeling to face uncertainty in the open world

lematic situations; and 3) defining general situations in the context
that can affect requirements. In complex service compositions, these
steps can be extended with methods for generating rules from data
(e.g. with heuristics or neural networks). The methods to create these
rules are out of the scope of this thesis.

Examples:

It is possible to infer that a service operation can affect the High Securi-
ty requirement when the execution time of a service operation is higher
than a particular threshold. For example, Listing 6.2 shows that an ob-
served execution time higher than 5,000 ms can be caused by a security
attack (such as a Denial of Service (DoS) attack). In this case, this ob-
served event affects the High Security requirement. In order to avoid
false positives with an inference over just one observed execution time,
which may not attempt against a particular requirement but may be
caused by a passing event (such as a particular short delay in the net-
work), a sample of observations can be used to make a decision. For in-
stance, if the same service operation fulfills the affectedHighSecurity-
Requirement rule in a set of h observations, we can be more confident
to infer that this service operation is under attack.

Listing 6.2: Rules to find out if a service operation affects the High Security
requirement.

1 @prefix j.0: http://my.ontology#
2 [underAttack: (?s rdf:type j.0:WebService)
3 (?s j.0:executionTime ?c)
4 greaterThan(?c,5000)
5 ->
6 (?s rdf:type j.0:UnderAttack)
7]
8

9 [affectedHighSecurityRequirement: (?s rdf:type j.0:UnderAttack)
10 ->
11 (?s rdf:type j.0:AffectedHighSecurityRequirement)
12] ⇧

In case of having more context sensors, it is possible to infer that a
service operation may attempt against the High Performance require-
ment in a T1 network when its execution time is extremely high, the
latency is higher than five ms, and the bandwidth is lower than 1.544

Megabits Per Second (Mbps) (see Listing 6.3).

How to find the requirements that can be affected by unknown
context events?

Knowledge base implemented as a rules file.

Achieving Dynamic Evolution through Models at
Runtime

Solution - Achieving Dynamic Evolution through Models at Runtime

Solution - Achieving Dynamic Evolution through Models at Runtime

Evolution Planner

1) Look for Unknown Context Events
from the Collected Information:
Periodically checks an updated ontology
(Alférez and Pelechano, SPLC 2011; Alférez
et al., JSS Elsevier 2014).	

•An observed context event is
considered as unknown when there are
not predefined context conditions to
deal with it. E.g. UPSShipping,
HasResponseTime, > 2,000 ms.

Look for Unknown
Context Events

Search
Affected

Requirement

Search
Surviving
Tactics

Solution - Achieving Dynamic Evolution through Models at Runtime

Evolution Planner

2) Search Affected Requirement(s): 	

Forward chaining. This method evaluates
arising context facts (i.e., context events)
against general rule premises in the
knowledge base. New context events
can trigger new inferences!

Alférez and Pelechano, MODELS 2012;
Alférez and Pelechano, ICWS 2013.

Look for Unknown
Context Events

Search
Affected

Requirement

Search
Surviving
Tactics

Solution - Achieving Dynamic Evolution through Models at Runtime

High
Security

High
Performance

Temporal
Separation

Deception
Introduce

Concurrency

goal

softgoal

tactic

Keep Alive the
Service Composition

24/7
Availability

Active
Redundancy

Shadow
Operation

+

++
++ +

+

Evolution Planner

3) Search Surviving Tactics:

Look for Unknown
Context Events

Search
Affected

Requirement

Search
Surviving
Tactics

Solution - Achieving Dynamic Evolution through Models at Runtime

E.g. The Evolution Planner has inferred that “The Barnes & Noble Books service
operation can affect the High Security softgoal”

Reconfiguration Engine

1) Merge a Tactic Model into the Composition Model:

Barnes & Noble Books

Search
Book

Show Book
Info

Show Related
Titles

x + +

book not found

book found

Barnes & Noble
Shopping Cart

Google
Authentication

Payment
Calculatorx

add more books

checkout

Deception Tactic

Log Intruder's
Activities

Manage
Sensors

+ Send E-mail to
System Administrator

Barnes & Noble Books + Deception Tactic

+ +

+
+

...

1

2

3

4

4

Solution - Achieving Dynamic Evolution through Models at Runtime

It can affect the High
Security softgoal

Reconfiguration Engine

2) Evolve the WS-
BPEL Composition
Schema:

fragment 1 fragment n

fragment 2

Repository of WS-BPEL
Code Fragments

MoRE-WS

1. looks for
tactic

2. gets
fragment

3. injects
fragment

AA D

Evolved Composition Model

Tactic

+

C

+

maps

WS-BPEL Composition
Schema

<flow>

<invoke>

WSDL
service

Problematic
Web

Service

Problematic
Service

Operation

<receive>

Tactic's
Functionality

<invoke>

<receive>

WSDL
tactic

Tactic's
Web

Service

fragment 2

Solution - Achieving Dynamic Evolution through Models at Runtime

Prototype

http://www.harveyalferez.com/dynamicevolutionservcomp/

http://www.harveyalferez.com/dynamicevolutionservcomp/

Preliminary Results

• We purposely injected
a set of context
events that were
not predefined at
design time.	

• Our approach found
the affected
requirements in
83.9% cases.

Validation

Inferences Accuracy

The number of discovered
requirements that can be negatively
affected is directly proportional to
the number of rules.

Reduced Uncertainty

Validation

!

Measures during a
dynamic evolution.

Dynamic Evolution Efficiency

Efficient Dynamic Evolution

Conclusions and Future Work

•A tool-supported approach that leverages models at
runtime to guide the dynamic evolution of context-aware
service compositions in the open world. 	

•It covers design time and runtime. 	

•It can be used to manage uncertainty produced by
unknown context events.

Conclusions

•The use of models at runtime has the following benefits: 	

•The modeling effort made at design time also provides a rich
semantic base for autonomic behavior during execution.	

•They provide up-to-date information to drive subsequent
evolutions.	

•Technological bridges are avoided.

Conclusions

•Use Constraint Programming to verify the evolved models
and check that generated configurations respect the
constraints imposed by the models. 	

•Carry out proactive dynamic evolutions with machine
learning. 	

•Apply the approach in other domains:	

•Robotics	

•Smart Cities	

•Wearables	

•Cloud Computing	

•The Internet of Things
Future Work

Thanks!

www.harveyalferez.com 	

harveyalferez@um.edu.mx

http://www.harveyalferez.com
mailto:harveyalferez@um.edu.mx

