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Geochemistry
Geochemistry helps one to 
determine:  

• The physical conditions 
under which the rocks 
formed.  

• The chemical 
distribution or 
redistribution of elements 
over geologic time [1].



Area of Interest
• Cretaceous batholithic 

rocks in southern 
California [2], which were 
emplaced in a plate tectonic 
subduction zone.  

• A batholith (or large 
granitic body) covers 
more than one hundred 
square kilometers in the 
crust [3, 4]. Northern Peninsular Ranges batholith (PRB)   

in southern California



Contribution
• To compare: 

• Our previous geochemical interpretation of the 
Californian northern Peninsular Ranges Batholith 
based on Principal Component Analysis (PCA) 
and Geographic Information Systems (GIS). 

• The results from machine learning (K-Means) 
based on a larger data set with almost 800 samples 
that comes from a larger area in southern 
California.



Our Previous Work

1. In our previous work [5], we identified multivariate 
outliers using Mahalanobis distance [9], and 
excluded.  

2. Then four components, identified by PCA, were 
mapped with GIS to observe their spatial 
distribution. 



Our Previous Work (Cont.)
• PCA is a statistical method based on the variance between 

variables where high-dimensional data is transformed into low 
dimensional data [7].  

• Reduce 40 geochemical variables to 4 components. 

• GIS is a system designed to capture, store, manipulate, analyze, 
manage, and present all types of spatial or geographical data.

• We approximated the values of the discrete sample points 
over the whole study region to recreate the continuous 
geochemical variation that was discretely sampled in the 
field [8].



Our Previous Work (Cont.)
• Four components were identified: 

• Compatible: compatible (and negatively correlated 
incompatible) elements indicate extent of differentiation as 
typified by SiO2 (Silicon dioxide). 

• High Field Strength (HFS): HFS elements indicate crustal 
contamination as typified by Sri (Initial 87Sr/ 86Sr ratios). 

• Heavy Rare Earth (HRE): HRE elements indicate source depth 
as typified by the Gd/Yb (Gadolinium/Ytterbium) ratio. 

• Large Ion Lithophile (LIL) elements: LIL elements indicate 
alkalinity as typified by the K2O/SiO2 (Potassium oxide/Silicon 
dioxide) ratio.



Geochemical Analysis by 
Means of Machine Learning 

WEKA was used to carry out the geochemical analysis of 
the southern California granitic rocks [14]. 

• Free tool 

• Written in Java 

• Large number of data analysis techniques 

• Facilitates data visualization



Geochemical Analysis by Means 
of Machine Learning (Cont.)

• Clustering to group the set of samples by 
geochemical factor (SiO2, Sri, Gd/Yb, and K2O/
SiO2). 

• Samples in the same cluster are more similar to 
each other than to those in other clusters. 

• K-Means: aims to partition n observations into k 
clusters in which each observation belongs to 
the cluster with the nearest mean, serving as a 
prototype of the cluster.



SiO2 (Silicon Dioxide) Analysis

Figure. 1. Spatial distribution and concentration of 
SiO2. The zones in red have a concentration above 
70%. The zones in blue have a concentration below 

60%

Figure 2. Cluster assignment visualization for SiO2.                  
Cluster 0 is in blue, Cluster 1 is in yellow, Cluster 2 is in red, and 

Cluster 3 is in green 



Sri (Initial 87Sr/ 86Sr ratios) Analysis 

Figure 3. Spatial distribution and concentration of Sri. 
The zones in red have a value greater than 0.707 for this 
variable. The zones in blue have a value less than 0.705 

Figure 4. Cluster assignment visualization for Sri.          
Cluster 0 is in yellow, Cluster 1 is in green, Cluster 2 is 

in red, and Cluster 3 is in blue 



Gd/Yb (Gadolinium/Ytterbium) Analysis

Figure. 5. Spatial distribution and concentration 
ratios of Gd/Yb. The zones in red have a high 

concentration above 2 for this ratio. The zones in 
blue have a low concentration below 2 for this ratio

Figure. 6. Cluster assignment visualization for 
Gd/Yb. Cluster 0 is in yellow, Cluster 1 is in 
red, Cluster 2 is in blue, and Cluster 3 is in 

green



K2O/SiO2 (Potassium Oxide/Silicon 
Dioxide) Analysis

Figure 7. Spatial distribution and concentration 
of K2O/SiO2. The zones in red have a high ratio 
above 0.03. The zones in blue have a low ratio 

below 0.03 

Figure. 8. Cluster assignment visualization for K2O/SiO2.     
Cluster 0 is in yellow, Cluster 1 is in blue, Cluster 2 is in red, 

and Cluster 3 is in orange



Related Work

Instead of using only two or three elements 
to group the data into clusters [15-18], this 
research used PCA, GIS, and machine 
learning: 

• To group large geochemical data sets 
more effectively 

• To find new patterns

Discri-
mination



Related Work (Cont.)
• Some of the most recent machine learning 

techniques have been used in: 

• Analyzing large quantities of spatially 
referenced seafloor video mosaics of mud 
volcanoes [25] 

• Discriminating tsunami deposits in Japan 
[26] 

• Predicting acid mine drainage [27] 

• Prospecting for minerals [28, 29]

Machine
Learning



Conclusions
• An approach to carry out geochemical analysis by 

means of machine leaning.  

• K- Means.  

• We demonstrated that the results with PCA and GIS 
are similar to the results found with K- Means. 

• This is an important finding because geologists will be 
able to: 1) use machine learning to validate what they 
find with statistical tools; or 2) use machine learning to 
obtain fast results with easily available tools.



Future Work

• Explore other ways to use machine learning to 
analyze geochemical data and geological events.  

• For instance, Could we predict possible 
earthquakes by means of generating forecasts 
based on historical data? 



Thank you!


