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Geochemistry

Geochemistry helps one to
determine:

* The physical conditions
under which the rocks
formed.

* The chemical
distribution or
redistribution of elements
over geologic time [1].




Area of Interest

 Cretaceous batholithic
rocks Iin southern
California [2], which were
emplaced In a plate tectonic
subduction zone.

* A batholith (or large
granitic body) covers
more than one hundred
sqguare kilometers in the

CrUSt [35 4] Northern Peninsular Ranges batholith (PRB)
in southern California



Contribution

[0 compare:

e Our previous geochemical interpretation of the
Californian northern Peninsular Ranges Batholith
based on Principal Component Analysis (PCA)
and Geographic Information Systems (GIS).

* The results from machine learning (K-Means)
based on a larger data set with almost 800 samples
that comes from a larger area in southern
California.



Our Previous Work

1. In our previous work [5], we identified multivariate
outliers using Mahalanobis distance [9], and
excluded.

2. Then four components, identified by PCA, were
mapped with GIS to observe their spatial
distribution.



Our Previous Work (Cont.)

 PCA is a statistical method based on the variance between
variables where high-dimensional data is transformed into low
dimensional data [/].

* Reduce 40 geochemical variables to 4 components.

 GIS is a system designed to capture, store, manipulate, analyze,
manage, and present all types of spatial or geographical data.

* We approximated the values of the discrete sample points
over the whole study region to recreate the continuous
geochemical variation that was discretely sampled in the
field [8].



Our Previous Work (Cont.)

* Four components were identified:

« Compatible: compatible (and negatively correlated
incompatible) elements indicate extent of differentiation as
typified by SiO» (Silicon dioxide).

* High Field Strength (HFS): HFS elements indicate crustal
contamination as typified by Sri (Initial °’Sr/ %°Sr ratios).

 Heavy Rare Earth (HRE): HRE elements indicate source depth
as typified by the Gd/Yb (Gadolinium/Ytterbium) ratio.

 Large lon Lithophile (LIL) elements: LIL elements indicate
alkalinity as typified by the K>O/SiO» (Potassium oxide/Silicon
dioxide) ratio.



Geochemical Analysis by
Means of Machine Learning

WEKA was used to carry out the geochemical analysis of
the southern California granitic rocks [14].

* Free tool
 Written in Java
* Large number of data analysis technigques

 Facilitates data visualization



Geochemical Analysis by Means
of Machine Learning (Cont.)

* Clustering to group the set of samples by
geochemical factor (SiOg, Sri, Gd/Yb, and K20/
SiO2).

 Samples in the same cluster are more similar to
each other than to those in other clusters.

 K-Means: aims to partition n observations into k
clusters in which each observation belongs to
the cluster with the nearest mean, serving as a
prototype of the cluster.



SIO2 (Silicon Dioxide) Analysis
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Figure 2. Cluster assignment visualization for SiO2.
Cluster 0 is in blue, , Cluster 2 is in red, and
Cluster 3 is in green

Table 1. WEKA results for percent Si0,

Figure. 1. Spatial distribution and concentration of Cluster # Number of Oxide
SiO2. The zones in red have a concentration above samples concentration
7/0%. The zones in blue have a concentration below ‘ 0 104 54.4%,
(o)
60% R 294 63.4%
Q 2 181 73.4%
O 192 68.0%




Sri (Initial 875r/ 865r ratios) Analysis

Figure 3. Spatial distribution and concentration of Sr;.
The zones in red have a value greater than 0.707 for this
variable. The zones in blue have a value less than 0.705
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Figure 4. Cluster assignment visualization for Sri.
, Cluster 1 is in green, Cluster 2 is

in red, and Cluster 3 is in blue

Table 2. WEKA results for Sr,

Cluster # N:;l.:;el:sd Isotope ratio
0 135 0.7091
O 358 0.7068
@®: 31 0.7126
®: 243 0.7042




Gd/Yb (Gadolinium/Ytterbium) Analysis
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Figure. 6. Cluster assignment visualization for

Gd/Yb. , Cluster 1 is in

red, Cluster 2 is in blue, and Cluster 3 is in
green

Table 3. WEKA results for Gd/Yb

Figure. 5. Spatial distribution and concentration

. . . Cluster # Number of El ¢ rati
ratios of Gd/Yb. The zones in red have a high LK samples ement ratios
concentration above 2 for this ratio. The zones in 0 461 24
blue have a low concentration below 2 for this ratio 0 9 36

.2 119 1.8
' 3 95 1.3




K20O/S102 (Potassium Oxide/Silicon
Dioxide) Analysis
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Figure. 8. Cluster assignment visualization for KoO/SiO2,

. Cluster 1 is in blue, Cluster 2 is in red,
and Cluster 3 is in orange

Table 4. WEKA results for K,0/S10,

Cluster # Number of Ratio values
Figure 7. Spatial distribution and concentration samples
of K20/SiO2. The zones in red have a high ratio ~ 0 277 0.045
above 0.03. The zones in blue have a low ratio @ 81 0.007
below 0.03 @®: 164 0.066
, 3 249 0.029




Related Work

Instead of using only two or three elements
to group the data into clusters [15-18], this

research used PCA, GIS, and machine
learning:

Discri-

mination

* Jo group large geochemical data sets
more effectively

e Jo find new patterns




Related Work (Cont.)

* Some of the most recent machine learning
technigques have been used in:

* Analyzing large quantities of spatially
referenced seafloor video mosaics of mud

volcanoes [25] Machine

Learning

e Discriminating tsunami deposits in Japan
[26]

« Predicting acid mine drainage [27]

* Prospecting for minerals [28, 29]



Conclusions

 An approach to carry out geochemical analysis by
means of machine leaning.

e K- Means.

- We demonstrated that the results with PCA and GIS
are similar to the results found with K- Means.

* Thisis an important finding because geologists will be
able to: 1) use machine learning to validate what they
find with statistical tools; or 2) use machine learning to
obtain fast results with easily available tools.



Future Work

* EXplore other ways to use machine learning to
analyze geochemical data and geological events.

e Forinstance, Could we predict possible
earthquakes by means of generating forecasts
based on historical data”?



Thank you!



