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* 66% of the world’s population will live in urban

areas by 2050 [1]

* There are more than 500 cities with a population
of 1T million or more people. However,
these cities have an average of 1 Adventist

congregation for every 89,000 people!
[2].

1. Department of Economic and Social Affairs, United Nations, “World’s Population Increasingly Urban with More

than Half Living in Urban Areas,” United Nations (July 10, 2014) https://www.un.org/development/desa/en/news/
population/world-urbanization-prospects.html; retrieved November 10, 2015.

2. A. Oliver, “Adventist Church Implements Assessment Plan for Urban Mission,” Adventist News Network (October
25, 2013) http://news.adventist.org/en/all-news/news/go/2013-10-25/adventist-church-implements-assessment-

plan-for-urban-mission/; retrieved November 11, 2015.



https://www.un.org/development/desa/en/news/population/world-urbanization-prospects.html
http://news.adventist.org/en/all-news/news/go/2013-10-25/adventist-church-implements-assessment-plan-for-urban-mission/

“The work In the cities is
the essential work for this
time. When the cities are
worked as God would have
them, the result will be the
setting in operation of a
mighty movement such as
we have not yet withessed”

[1].

1. E. G. White, Medical Ministry (Pacific Press Pub, 1963), p. 304.




“The importance of
making our way In the
great cities is still kept
before me. For many years
the Lord has been urging
upon us this duty, and yet
we see but comparatively
little accomplished in our
great centers of
population” [1].

1. E. G. White, A Call to Medical Evangelism and Health Education (TEACH Services, Inc., 1997), p. 14.



: ~ L T
‘the Savior mingled with men as one who desired
thelr good. He showed His sympathy tor them,
ministered to their needs, and won their confidence.
Then Hedbade them, ‘Follow Me.”™ [ 1

1. E. G. White, The Ministry of Healing (Review & Herald, 1905), p. 143.







Use data science to understand the
needs of people in New York City.



Data Science can be defined as the study of the
generalizable extraction of knowledge from data [1].

1. V. Dhar, “Data science and prediction,” Commun. ACM , 56 (12, 2013), pp. 64-73.
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Why do we need a new term like data science when we
have had statistics for centuries?

1. The raw material, the “data” part of data science,
'S iIncreasingly heterogeneous and unstructured.

2. Traditional database methods are not suited for
knowledge discovery.

Unlike database querying, which asks “What
data satisfies this pattern (query)?”

discovery asks “What interesting and robust
patterns satisfy this data””



The Digital Universe Is Huge

* The digital universe is doubling In size every two

years.

* By 2020 it wil

gigabytes [1].

reach 44 zettabytes, or 44 trillion

* [hese facts have motivated companies and
scientists in the last years to find new ways to
understand big data in the digital universe.

1. IDC, “The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things,” EMC Corporation
(April, 2014) http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm; retrieved January 27, 2015.



http://www.emc.com/l

* Big data is a termed that can be used to describe
data sets so large and complex that they become
difficult to work with using standard techniques

[1].

* Big data is the next big thing. The new oil [2].

1. C. Snijders, U. Matzat, and U. D. Reips, “Big Data’: Big Gaps of Knowledge in the Field of Internet Science,”
International Journal of Internet Science 7, no. 1 (2014): 1-5.

2. P. Rotella, “Is Data the New Oil?,” Forbes (April 2, 2012) www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-
oil/; retrieved January 28, 2015.


http://www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-oil/

My Way lowards Researcn
on Data Science

2014 2015 2016 2017

——

Understanding Data

Software (IJSC, SERP 2014)
Health (IUPESM 2015)
Geoscience (ICAI 2015)

Smart Cities (lCAl 201 5) Full references are available on
www.harveyalterez.com
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My Way lowards Researcn
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Is it possible to use data science to
understand the needs of people in big
cities?



My Way lowards Researcn
on Data Science

2014 2015 2016 2017

Big Data for
What Would
1%5? Reaching an
a Big World  Awesr




My Way lowards Researcn
on Data Science
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Tweeting in New
York City, Data
Science Can
Teach Us to
Sympathize




Which data to use to understand the
needs of people in big cities?




Twitter Is the largest

searchable archive of
human thought, that's
public, that's ever existed

[1].



http://www.technologyreview.com/news/542711/twitter-boasts-of-what-it-can-do-with-your-data/

Reacning People’s Iweets

Sentiment analysis was used to discover the needs
of people from tweets.

The computational study of opinions,
sentiments, and emotions expressed In text [1].

Sentiment analysis has been satisfactory used to
classity users’ sentiments in tweets [2].

1. B. Ling, "Sentiment Analysis and Subjectivity," in N. Indurkhya, & F. J. Damerau, Handbook of Natural Language Processing,
2nd ed., (Boca Raton, FI: Chapman & Hall, 2010), pp. 627-665.

2. A. Tumasjan, T. O. Sprenger, & P. G., Sa. “Predicting Elections with Twitter: What 140 Characters Reveal about Political
Sentiment,” Proceedings of the Fourth International AAAl Conference on Weblogs and Social Media. AAAl, (2010), pp.
178-185.



Reacning People’s Iweets

e Tweets are classified

* as positive when they communicate a positive
sentiment, such as happiness;

* as negative when a negative sentiment Is
attached to them (e.g. sadness);

* and as neutral when no emotions are implied.



Reacning People’s Iweets

Machine learning [1]| was used as a tool to
differentiate tweets with positive, negative, and
neutral sentiments.

Machine learning explores the study and

construction of algorithms that can learn from
and make predictions on data.

1. A. Go, R. Bhayani, & L. Huang, Twitter Sentiment Classification using Distant Supervision (Stanford University, 2009)



Reacning People’s Iweets

“Most of us are trained to believe theory must
originate in the human mind based on prior theory,
with data then gathered to demonstrate the validity of
the theory. Machine learning turns this process
around. Given a large trove of data, the computer
taunts us by saying, ‘If only you knew what question
to ask me, | would give you some very interesting
answers based on the data.” [1]

1. V. Dhar, “Data science and prediction,” Commun. ACM , 56 (12, 2013), pp. 64-73.



Listening Closely to the
Birds

Over a period of six weeks
(September 22 to November 3,
2015), we collected 2,084 tweets
from New York City, 1,633 of them
bearing positive sentiments and
451 expressing negative
sentiments. Tweets with neutral
sentiments were not collected.




Listening Closely to the Birds

30 specified keywords:

Adventist, addiction, Bible, children, Christ,
church, contamination, divorce, education,
elderly, exercise, family, God, health, Jesus,
obesity, peace, poverty, religion, rest, safety,
salvation, Savior, stress, teenagers, teens,
terrorism, vegetarian, violence, youth



% YEAS St REaRsEs e v owae v
strij{"coordinates”]). uln(' "ll!l.wutl"l PRAY BT
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fd.closel)

elif int(j[“polarity™]) == &:
positive_tweets o= 1
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fd = open('DataSets/ suser_citys+' '+EXPRESSION+'.csv','a")
. fd.write("Positive™ + "\\e "

strij("postid™] )« \\e e

striji®username™]) +"\\e"+
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return negative _tweets, positive tweets
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maintargv)s

global user_city
global EXPRESSION
global radie

try:
opts, args = getopt.getoptlargv,"hezc:ir:l:", [Mexpra®, "citys" "ra

except getopt,Getoptirrer:
print os.path.basenamel__file__) + ' -e <eapression> -¢ <city» -
pass

for opt, arg in opts:
i1 0pt == ‘=h":
prist os.path.basenamel(__file__) » ' «~¢ «expressions «¢ «¢it
sys.exit()
elif opt in (“«e", “ewexpr):
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Positive Tweet about
Vegetarian Food

Positive
her*

2015/10/02 02:08:16

| want to be vegetarian. | really do. @arrogantswine @
East Williamsburg Brooklyn https://t.co/rpatPGyhXw\

-73.939 (longitude)

40.714 (latitude)



Negative Tweet about Family

 Negative
e And”
* 11/10/15 18:48

« My ex has made them hate me, but | still see the
children in my dreams.

o -73.74663446 (longitude)

e 40.69729011 (latitude)
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Figure 1. Intensity of tweets in New York City



Listening Closely to the Birds

I'he Pond
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Figure 2. Areas with negative tweets in Manhattan
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Upbeat and Downbeat
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Figure 3. Positive tweets about vegetarian food in Manhattan



Upbeat and Downbeat
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Figure 4. Positive [blue] and negative [red] tweets
about family in Manhattan.



Data science I

us understand t

big cities in an

|

as the potential to help
he needs of people In
unprecedented way.




What's Next?

e Other cities, other datasets: London, Mumbai,
Buenos Aires, and Mexico City

* Build an easy-to-use tool that pastors, evangelists,
and church leaders will be able to use to
understand the needs of people in their cities



What's Next?

 Other areas: Health (Universidad de
Montemorelos):

* Find hidden patterns in thousands of dental
records. School of Dentistry

* Diagnosis of glaucoma by means of machine
learning. Ophthalmological Clinic

* Discover hidden reasons of maternal mortality in
Mexico. School of Medicine



1. Let God grant us grace and
bless us;
shine on us,

2

known on earth,

salvation becomes known
among all the nations.

3 Let the people thank you, God!
Let all the people thank you!

Psalm 67:1-3 (CEB)
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