
Context-Aware Autonomous Web
Services in Software Product Lines

Germán H. Alférez1 and Vicente Pelechano2

1 Facultad de Ingeniería y Tecnología, Universidad de Montemorelos, Mexico

2 Centro de Investigación en Métodos de Producción de Software (ProS), Universitat Politècnica de València, Spain

Presented at the 15th International Software Product Line Conference (SPLC).

Munich, Germany. August, 2011

Context of the Problem

Service-Oriented Architecture:

Improves the agility and cost-effectiveness of a company.

Web services are the most common realization of SOA:

Run in heterogeneous and complex environments.
 Adaptation mechanisms:

- Impractical to assign manual reconfiguration tasks.
- Burden to IT staff & reaction to contextual events.

- Autonomic Computing: self-* mechanisms.
- Dynamic binding & adaptation policies.

 In SOA, reusability logic is divided into services.
- SOA does not promote prescribed reuse of Web services.
- Variants among systems are difficult to capture explicitly using
the notion of Web services.

Problem

Need for Systematic
Reuse of Web Services

Need for Systematic
Reuse of Web Services

Need for Autonomic
Adaptation of Web services

Need for Autonomic
Adaptation of Web services

Our Approach

Need for Systematic
Reuse of Web Services

Need for Systematic
Reuse of Web Services

Need for Autonomic
Adaptation of Web services

Need for Autonomic
Adaptation of Web services

Supporting method for:
Designing & implementing

context-aware
autonomous Web services

in systems families.

Supporting method for:
Designing & implementing

context-aware
autonomous Web services

in systems families.

Supporting tool

Our Approach

Need for Systematic
Reuse of Web Services

Need for Systematic
Reuse of Web Services

Need for Autonomic
Adaptation of Web services

Need for Autonomic
Adaptation of Web services

Supporting method for:
Designing & implementing

context-aware
autonomous Web services

in systems families.

Supporting method for:
Designing & implementing

context-aware
autonomous Web services

in systems families.

Supporting tool

Autonomic Computing +
SPL engineering +

Models at runtime +
Dynamic SPL (DSPL) engineering

Our Approach

Our method's basis:

 Autonomic Computing: Automate tasks for self-adapting Web
service operations.

 SPL Engineering:

Activation/deactivation
of SPL features at runtime

Activation/deactivation
of SPL features at runtime

Web service operations
characterized by SPL features

Web service operations
characterized by SPL features

Autonomic reconfiguration
of service compositions depending

on contextual changes

Autonomic reconfiguration
of service compositions depending

on contextual changes
Systematic ReuseSystematic Reuse

Our Approach

Our method's basis (Cont.):

 DSPL Engineering: The architecture of a DSPL allows a flexible
service recomposition.
– When features are activated/deactivated
• A DSPL architecture binds variation points at runtime

 Models at Runtime: The production capability is based on
reusable models (core assets).

 Variability models: Easy-to-understand and semantically
rich adaptation policies for decision making.

Our Approach

Requirements:

1. Context: Any environmental information that can be used by a
Web service at runtime.

2. Measure Instruments:

• Monitor the context and get the measures for basic metrics of
specific quality attributes.
• Availability and time.

Our Approach

Requirements (Cont.):

3. Context Conditions:

• New context event → Does it violate any context condition
(Service Level Agreement or contract)?
– Contract is violated → Reconfiguration of the service

composition.

4. Resolutions:

• If a context condition has been accomplished: What are we
going to do?
• Express adaptation policies or transitions between different
configurations of service compositions.
• RC = {(F, S)} | F [FM] S {Active, Inactive}∈ ∧ ∈

Our Approach

Our method's SPL activities:

1. Domain Engineering Activity.
 Reusable models: Production capability for service

compositions.

2. Application Engineering Activity.
 Supports the derivation of specific service compositions

from a product family.
 Autonomic recomposing Web services: Model-based

Reconfiguration Engine for Web services (MoRE-WS).

Our Approach

MoRE-WS:

 MoRE-WS translates context changes into changes in the
activation/deactivation of features.

 Our previous work: C. Cetina, P. Giner, J. Fons, and V.
Pelechano, “Autonomic computing through reuse of variability
models at runtime: The case of smart homes,” Computer, vol. 42,
pp. 37-43, October 2009.

Our Approach

Case Study:

A SPL for mobile tourist planners based on Web services:

• Lists the tourist attractions of a city.
• Recommends trips to those places depending on the weather

and current location.

Our Approach

Domain Engineering Activity:

Our Approach

Domain Engineering Activity / Feature Model:

 Describes the dynamic system configurations and the
variants of the system.

 Some features denote the initial system configuration, while
other features represent potential variants.

Our Approach

Domain Engineering Activity / Composition Model:

 Web services and the sequence flows among them.
 UML Activity diagram.

Our Approach

Domain Engineering Activity / Composition Model:

 Web services and the sequence flows among them.
 UML Activity diagram.

Web Services

Our Approach

Domain Engineering Activity / Composition Model:

 Web services and the sequence flows among them.
 UML Activity diagram.

TouristPlannerTOLocation

Our Approach

Domain Engineering Activity / Composition Model:

 Web services and the sequence flows among them.
 UML Activity diagram.

Weather Decision

Our Approach

Domain Engineering Activity / Composition Model:

Mapping rules.

Our Approach

Domain Engineering Activity / Weaving Model:

 Define and capture relationships between features in the
Feature Model and model elements of the Composition
Model.

 One-to-many relationship.

Our Approach

Domain Engineering Activity / Weaving Model:

 Define and capture relationships between features in the
Feature Model and model elements of the Composition
Model.

 One-to-many relationship.

Link

Right Element:
Location Web Service

Left Element:
Location Feature

Our Approach

Domain Engineering Activity / Feature Model for Measure
Instruments:

 Measure instruments in terms of features: e.g. Response
time and execution time.
• They can be systematically reused.

Our Approach

Domain Engineering Activity / Context Model:

 Ontology-based.
• Formal analysis of the domain knowledge. Context

reasoning using first-order logic.

Our Approach

Application Engineering Activity:

Our Approach

Our Approach

Current Configuration =
{Mobile Tourist Planner, Location,
Weather, Global Weather, Transportation,
Bicycle, Bus}

Our Approach

Our Approach

Current Configuration
Measure Instruments

 =
{Availability, Response Time, Execution Time}

Our Approach

Our Approach

GlobalWeather_Unavailable =
 (Global Weather, isAvailable, false)

Location_HiRespTime =
(Location, responseTime, > 2,000 ms)

Our Approach

Our Approach

RGlobalWeather_Unavailable =
{(Mobile Tourist Planner, Active), (Location, Active),
(Weather, Active), (Global Weather, Inactive),
(Weather Forecast, Active),
(Transportation, Active), (Bicycle, Active),
(Bus, Active)}

Our Approach

Our Approach

Application Engineering Activity / Runtime Configuration:

Service composition

Collect information Carry out changes

IBM's reference model for autonomic control
loops (MAPE-K loop)

Our Approach

Application Engineering Activity / Runtime Configuration:

a. Monitor:

 Captures basic metrics of specific quality attributes from
the context.

 Monitor component of SALMon (Ameller and Franch @
ICCBSS 2008).

Our Approach

Our Approach

Application Engineering Activity / Runtime Configuration:

b. Analyze:

(Global Weather,
Inactive),

(Weather Forecast,
Active)

Our Approach

Application Engineering Activity / Runtime Configuration:

c. Plan:

Reconfiguration actions stated as A and∇ A∆.
Given Rcontext condition → Reconfiguration Plan. RglobalWeather_Unavailable:

A∇GlobalWeather_Unavailable = {Global Weather, WeatherDecisionTOGlobalWeather,
GlobalWeatherTOTransportDecision}

A∆GlobalWeather_Unavailable = {Weather Forecast, WeatherDecisionTOWeatherForecast,
WeatherForecastTOTransportDecision}

Our Approach

Application Engineering Activity / Runtime Configuration:

d. Execute:

 Execution of the Reconfiguration Plan.
 Web services are created using the Java API for XML Web

Services (JAX-WS) and deployed as OSGi bundles in
Swordfish.

Our Approach

Our Approach

Application Engineering Activity / Runtime Configuration:

e. Knowledge:

 The SPARQL Protocol and RDF Query Language (SPARQL):
 Data source to be queried: Ontology.
 INSERT and ASK.

 The EMF Model Query framework (EMFMQ): To query the
Feature Model and the Weaving Model.

Our Approach

Conclusions

 Presented a method to design and implement context-aware
autonomous Web services in system families.

 Autonomic Computing, SPL engineering, DSPL architecture,
and models at runtime.

 Small case study using MoRE-WS prototype.

Future Work

Evaluate our approach with respect to:

 Autonomic-level achievement.
 Scalability of model-handling technologies at runtime.

Tool to validate reconfigurations of service compositions at
design time to prevent negative effects during execution.

Thanks!

Questions?

harveyalferez@um.edu.mx

